Skip to main content

Dynamic Neighborhood Searches for Thermodynamically Designing DNA Sequence

  • Conference paper
DNA Computing (DNA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4848))

Included in the following conference series:

Abstract

We present a local search based algorithm designing DNA short-sequence sets satisfying thermodynamical constraints about minimum free energy (MFE) criteria. In DNA12, Kawashimo et al. propose a dynamic neighborhood search algorithm for the sequence design under hamming distance based constraints, where an efficient search is achieved by dynamically controlling the neighborhood structures. Different from the hamming distance based constraints, the thermodynamical constraints are generally difficult to handle in local-search type algorithms. This is because they require a large number of evaluations of MFE to find an improved solution, but the definition of MFE itself contains time-consuming computation. In this paper, we introduce techniques to reduce such time-consuming evaluations of MFE, by which the proposed dynamic neighborhood search strategy become applicable to the thermodynamical constraints in practice. In computational experiments, our algorithm succeeded in generating better sequence sets for many constraints than exiting methods.

This research partly received financial support from Scientific research fund of Ministry of Education, Culture, Sports, Science and Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  2. Andronescu, M., Zhang, Z., Condon, A.: Secondary Structure Prediction of Interacting RNA Molecules. J. of Molecular Biology 345(5), 987–1001 (2005), www.rnasoft.ca/download.html

    Article  Google Scholar 

  3. Arita, M., Kobayashi, S.: DNA Sequence Design Using Templates. New Generation Computing 20(3), 263–273 (2002)

    Article  MATH  Google Scholar 

  4. Asahiro, Y.: Simple Greedy Methods for DNA Word Design. Proc. of 9th World Multi-Conference on Systemics, Cybernetics and Informatics 3, 186–191 (2005)

    Google Scholar 

  5. Braich, R., Chelyapov, N., Johnson, C., Rothemund, P., Adleman, L.: Solution of a 20-Variable 3-SAT Problem on a DNA Computer. Science 296(5567), 499–502 (2002)

    Article  Google Scholar 

  6. Deaton, R., Kim, J., Chen, J.: Design and test of noncrosshybridizing oligonucleotide building blocks for DNA computers and nanostructures. Applied Physics Letters 82(8), 1305–1307 (2003)

    Article  Google Scholar 

  7. Dirks, R., Lin, M., Winfree, E., Pierce, N.: Paradigms for computational nucleic acid design. Nucleic Acids Research 32(4), 1392–1403 (2004)

    Article  Google Scholar 

  8. Faulhammer, D., Cukras, A., Lipton, R., Landweber, L.: Molecular computation: RNA solutions to chess problems. Proc. of the National Academy of Sciences of the United States of America 97(4), 1385–1389 (2000)

    Article  Google Scholar 

  9. Garzon, M., Phan, V., Roy, S., Neel, A.: In Search of Optimal Codes for DNA Computing. In: Mao, C., Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287, pp. 143–156. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Kameda, A., Yamamoto, M., Ohuchi, A., Yaegashi, S., Hagiya, M.: Unravel Four Hairpins! In: Mao, C., Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287, pp. 381–392. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Kawshimo, S., Ono, H., Sadakane, K., Yamashita, M.: DNA Sequence Design by Dynamic Neighborhood Searches. In: Mao, C., Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287, pp. 157–171. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Lyngsø, R., Zuker, M., Pedersen, C.: Fast evaluation of internal loops in RNA secondary structure prediction. Bioinfomatics 15, 440–445 (1999)

    Article  Google Scholar 

  13. Penchovsky, R., Ackermann, J.: DNA Library Design for Molecular Computation. J. of Computational Biology 10(2), 215–229 (2003)

    Article  Google Scholar 

  14. Reif, J., Sahu, S., Yin, P.: Complexity of Graph Self-assembly in Accretive Systems and Self-destructible Systems. In: Carbone, A., Pierce, N.A. (eds.) DNA Computing. LNCS, vol. 3892, pp. 257–274. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Rose, J., Deaton, R., Suyama, A.: Statistical thermodynamic analysis and design of DNA-based computers. Natural Computing 3, 443–459 (2004)

    Article  MathSciNet  Google Scholar 

  16. Shiozaki, M., Ono, H., Sadakane, K., Yamashita, M.: A Probabilistic Model of DNA Conformational Change. In: Mao, C., Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287, pp. 274–285. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Shorteed, M., Chang, S., Hong, D., Phillips, M., Campion, B., Tulpan, D., Andronescu, M., Condon, A., Hoos, H., Smith, L.: A thermodynamic approach to designing struct-free combinatorial DNA word set. Nucleic Acids Research 33(15), 4965–4977 (2005)

    Article  Google Scholar 

  18. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of nucleic acid sequences for DNA computing based on a thermodynamic approach. Nucleic Acids Research 33(3), 903–911 (2005)

    Article  Google Scholar 

  19. Tulpan, D., Hoos, H., Condon, A.: Stochastic Local Search Algorithms for DNA Word Design. In: Hagiya, M., Ohuchi, A. (eds.) DNA Computing. LNCS, vol. 2568, pp. 229–241. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Tulpan, D., Hoos, H.: Hybrid Randomized Neighborhoods Improve Stochastic Local Search for DNA Code Design. In: Xiang, Y., Chaib-draa, B. (eds.) Advances in Artificial Intelligence. LNCS (LNAI), vol. 2671, pp. 418–433. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Tulpan, D., Andronescu, M., Changf, S., Shortreed, M., Condon, A., Hoos, H., Smith, L.: Thermodynamically based DNA strand design. Nucleic Acids Research 33(15), 4951–4964 (2005)

    Article  Google Scholar 

  22. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  23. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9, 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max H. Garzon Hao Yan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawashimo, S., Ono, H., Sadakane, K., Yamashita, M. (2008). Dynamic Neighborhood Searches for Thermodynamically Designing DNA Sequence. In: Garzon, M.H., Yan, H. (eds) DNA Computing. DNA 2007. Lecture Notes in Computer Science, vol 4848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77962-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77962-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77961-2

  • Online ISBN: 978-3-540-77962-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics