Skip to main content

On the Max Coloring Problem

  • Conference paper
Approximation and Online Algorithms (WAOA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4927))

Included in the following conference series:

Abstract

We consider max coloring on hereditary graph classes. The problem is defined as follows. Given a graph G = (V,E) and positive node weights w:V →[1, ∞ ), the goal is to find a proper node coloring of G whose color classes C 1,C 2, ..., C k minimize \(\sum\limits_{i=1}^k \max _{v\in C_i} w(v)\). We design a general framework which allows to convert approximation algorithms for standard node coloring into algorithms for max coloring. The approximation ratio increases by a multiplicative factor of at most e for deterministic offline algorithms and for randomized online algorithms, and by a multiplicative factor of at most 4 for deterministic online algorithms. We consider two specific hereditary classes which are interval graphs and perfect graphs.

For interval graphs, we study the problem in several online environments. In the List Model, intervals arrive one by one, in some order. In the Time Model, intervals arrive one by one, sorted by their left endpoint. For the List Model we design a deterministic 12-competitive algorithm, a randomized 3e-competitive algorithm, and prove a lower bound of 4 on the (deterministic or randomized) competitive ratio. For the Time Model, we use simplified versions of the algorithm and the lower bound of the List Model, to achieve a deterministic 4-competitive algorithm, a randomized e-competitive algorithm, and lower bounds of φ ≈ 1.618 on the deterministic competitive ratio and \(\frac 43\) on the randomized competitive ratio. The former lower bounds hold even for unit intervals. For unit intervals in the List Model, we obtain a deterministic 8-competitive algorithm, a randomized 2e-competitive algorithm and lower bounds of 2 on the deterministic competitive ratio and \(\frac {11}6\approx 1.8333\) on the randomized competitive ratio.

Finally, we employ our framework to obtain an offline e-approximation algorithm for max coloring of perfect graphs, improving and simplifying a recent result of Pemmaraju and Raman.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamy, U., Erlebach, T.: Online coloring of intervals with bandwidth. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 1–12. Springer, Heidelberg (2004)

    Google Scholar 

  2. Chrobak, M., Ślusarek, M.: On some packing problems relating to dynamical storage allocation. RAIRO Journal on Information Theory and Applications 22, 487–499 (1988)

    Google Scholar 

  3. Demange, M., de Werra, D., Monnot, J., Paschos, V.T.: Time slot scheduling of compatible jobs. Journal of Scheduling 10(2), 111–127 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Epstein, L., Levy, M.: Online interval coloring and variants. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 602–613. Springer, Heidelberg (2005)

    Google Scholar 

  5. Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring: Further complexity and approximability results. Information Processing Letters 97(3), 98–103 (2006)

    MathSciNet  Google Scholar 

  6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)

    MATH  Google Scholar 

  7. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  8. Guan, D.J., Zhu, X.: A coloring problem for weighted graphs. Information Processing Letters 61(2), 77–81 (1997)

    Article  MathSciNet  Google Scholar 

  9. Gyárfás, A., Lehel, J.: On-line and first-fit colorings of graphs. Journal of Graph Theory 12, 217–227 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jensen, T.R., Toft, B.: Graph coloring problems. Wiley, Chichester (1995)

    MATH  Google Scholar 

  11. Kierstead, H.A.: The linearity of first-fit coloring of interval graphs. SIAM Journal on Discrete Mathematics 1(4), 526–530 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kierstead, H.A., Qin, J.: Coloring interval graphs with First-Fit. SIAM Journal on Discrete Mathematics 8, 47–57 (1995)

    Article  MathSciNet  Google Scholar 

  13. Kierstead, H.A., Trotter, W.T.: An extremal problem in recursive combinatorics. Congressus Numerantium 33, 143–153 (1981)

    MathSciNet  Google Scholar 

  14. Lovász, L., Saks, M., Trotter, W.T.: An on-line graph coloring algorithm with sublinear performance ratio. Discrete Math. 75, 319–325 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Monnot, J., Paschos, V.T., de Werra, D., Demange, M., Escoffier, B.: Weighted coloring on planar, bipartite and split graphs: Complexity and improved approximation. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 896–907. Springer, Heidelberg (2004)

    Google Scholar 

  16. Narayanaswamy, N.S.: Dynamic storage allocation and online colouring interval graphs. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 329–338. Springer, Heidelberg (2004)

    Google Scholar 

  17. Pemmaraju, S.V., Penumatcha, S., Raman, R.: Approximating interval coloring and max-coloring in chordal graphs. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 399–416. Springer, Heidelberg (2004)

    Google Scholar 

  18. Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)

    Google Scholar 

  19. Pemmaraju, S.V., Raman, R., Varadarajan, K.R.: Buffer minimization using max-coloring. In: SODA 2004. Proc. of 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 562–571 (2004)

    Google Scholar 

  20. Schrijver, A.: Combinatorial Optimization Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christos Kaklamanis Martin Skutella

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Epstein, L., Levin, A. (2008). On the Max Coloring Problem. In: Kaklamanis, C., Skutella, M. (eds) Approximation and Online Algorithms. WAOA 2007. Lecture Notes in Computer Science, vol 4927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77918-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77918-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77917-9

  • Online ISBN: 978-3-540-77918-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics