Abstract
In our targeted scenario, humans can flexibly establish joint object reference with a robot entirely on the basis of their own intuitions. To reach this aim, the robot needs to be equipped with the kind of knowledge that can be matched in a cognitively adequate way to users’ intuitive conceptual and linguistic preferences. Such an endeavour requires knowledge about human spatial object reference under consideration of object affordances and functional features. In this paper we motivate our approach by reviewing relevant insights gained in the field of Spatial Cognition, and we discuss the suitability of our robotic system to incorporate these findings. In our context, affordances are visually perceivable functional object aspects shared by the designer of the recognition module and the prospective robot user or instructor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amalberti, R., Carbonell, N., Falzon, P.: User Representations of Computer Systems in Human–Computer Speech Interaction. International Journal of Man–Machine Studies 38, 547–566 (1993)
Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94, 115–147 (1987)
Carlson-Radvansky, L.A., Radvansky, G.: The influence of functional relations on spatial term selection. Psychological Science 7, 56–60 (1996)
Coventry, K.R., Garrod, S.C.: Saying, seeing and acting: The psychological semantics of spatial prepositions. Essays in Cognitive Psychology series. Psychology Press (2004)
Dickinson, S., Metaxas, D., Pentland, A.: The role of model-based segmentation in the recovery of volumetric parts from range data. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(3), 259–267 (1997)
Doran, C., Aberdeen, J., Damianos, L., Hirschman, L.: Comparing several aspects of human-computer and human-human dialogues. In: Proceedings of the 2nd SIGdial Workshop on Discourse and Dialogue, Aalborg, Denmark, pp. 1–2 (September 2001)
Fischer, K.: Linguistic methods for investigating concepts in use. Methodologie in der Linguistik (2003)
Fischer, K.: What Computer Talk Is and Is not: Human-Computer Conversation as Intercultural Communication. AQ, Saarbruecken (2006)
Fischer, K., Moratz, R.: From communicative strategies to cognitive modelling. In: Workshop Epigenetic Robotics, Lund (2001)
Gibson, J.: The Ecological Approach to Visual Perception. Houghton Mifflin Company, Boston (1979)
Gorniak, P., Roy, D.: Situated language understanding as filtering perceived affordances. Cognitive Science (in press)
Habel, C., Hildebrandt, B., Moratz, R.: Interactive robot navigation based on qualitative spatial representations. In: Wachsmuth, I., Jung, B. (eds.) Proceedings Kogwis 1999, St. Augustin. infix, pp. 219–225 (1999)
Hauck, A., Lanser, S., Zierl, C.: Hierarchical recognition of articulated objects from single perspective views. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 870–876. IEEE Computer Society Press, Los Alamitos (1997)
Herrmann, T.: Vor, hinter, rechts und links: das 6H-Modell. Psychologische Studien zum sprachlichen Lokalisieren. Zeitschrift für Literaturwissenschaft und Linguistik 78, 117–140 (1990)
Herrmann, T., Deutsch, W.: Psychologie der Objektbenennung. Hans Huber Verlag, Bern u.a (1976)
Herrmann, T., Grabowski, J.: Sprechen: Psychologie der Sprachproduktion. Spektrum Verlag, Heidelberg (1994)
Hois, J., Wünstel, M., Bateman, J.A., Röfer, T.: Dialog-based 3d-image recognition using a domain ontology. In: Proc. International Conference Spatial Cognition, September 24–28, 2006 Bremen, Germany (2006)
Jordan, T., Raubal, M., Gartrell, B., Egenhofer, M.: An affordance-based model of place in GIS. In: Eight International Symposium on Spatial Data Handling, pp. 98–109 (1998)
Kruijff, G.-J.M., Zender, H., Jensfelt, P., Christensen, H.I.: Situated dialogue and spatial organization: What, where... and why? International Journal of Advanced Robotic Systems, Special Issue on Human and Robot Interactive Communication 4(2) (to appear, 2007)
Kuhn, W.: Handling data spatially: Spatializing user interfaces. In: SDH 1996. Advances in GIS Research II, Delft. International Geographical Union, pp. 13B.1–13B.23 (1996)
Lanser, S., Zierl, C., Munkelt, O., Radig, B.: Moral - a vision-based object recognition system for autonomous mobile systems. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS, vol. 1296, pp. 33–41. Springer, Heidelberg (1997)
Lauria, S., Bugmann, G., Kyriacou, T., Bos, J., Klein, E.: Training personal robots using natural language instruction. IEEE Intelligent Systems 16(5), 38–45 (2001)
Leonardis, A., Solina, F., Macerl, A.: A direct recovery of superquadric models in range images using recover- and select paradigm. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 309–318. Springer, Heidelberg (1994)
Levinson, S.C.: Space in language and cognition: explorations in cognitive diversity. Cambridge University Press, Cambridge (2003)
Mark, L.: Eye height-scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance 13, 361–370 (1987)
Miller, G., Johnson-Laird, P.: Language and Perception. Cambridge University Press, Cambridge (1976)
Moratz, R.: Intuitive linguistic joint object reference in human-robot interaction. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI), pp. 1483–1488 (2006)
Moratz, R., Fischer, K., Tenbrink, T.: Cognitive Modeling of Spatial Reference for Human-Robot Interaction. International Journal on Artificial Intelligence Tools 10(4), 589–611 (2001)
Moratz, R., Tenbrink, T.: Instruction modes for joint spatial reference between naive users and a mobile robot. In: Proceedings of RISSP IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Special Session on New Methods in Human Robot Interaction, pp. 8–13. Changsha, China (2003)
Moratz, R., Tenbrink, T.: Spatial reference in linguistic human-robot interaction: Iterative, empirically supported development of a model of projective relations. Spatial Cognition and Computation 6(1), 63–106 (2006)
Sacks, H., Schegloff, E., Jefferson, G.: A simplest systematics for the organization of turn-taking for conversation. Language 50, 696–735 (1974)
Solina, F., Bajcsy, R.: Recovery of parametric models form range images: The case for superquadratics with global deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(2), 131–146 (1990)
Spexard, T., Li, S., Wrede, B., Fritsch, J., Sagerer, G., Booij, O., Zivkovic, Z., Terwijn, B., Kröse, B.: BIRON, where are you? Enabling a robot to learn new places in a real home environment by integrating spoken dialog and visual localization. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2006)
Stark, L., Bowyer, K.: Generic Object Recognition using Form and Function. World Scientific, Singapore (1996)
Talmy, L.: Towards a cognitive semantics. A Bradford Book, M.I.T. Press, Cambridge, MA (2000)
Tenbrink, T.: Identifying objects on the basis of spatial contrast: an empirical study. In: Freksa, C., et al. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 124–146. Springer, Heidelberg (2005)
Tsuji, T., Tanaka, Y.: Tracking control properties of human-robotic systems based on impedance control. IEEE Transactions on Systems, Man, and Cybernetics, Part A 35(4), 523–535 (2005)
Webber, B.L., Badler, N.I., Eugenio, B.D., Geib, C.W., Levison, L., Moore, M.: Instructions, intentions and expectations. Artif. Intell. 73(1-2), 253–269 (1995)
Wu, K., Levine, M.: Recovering parametric geons from multiview range data. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 159–166. Seattle (1994)
Wünstel, M., Moratz, R.: Automatic object recognition within an office environment. In: Canadian Conference on Computer and Robot Vision (CRV2004) (2004)
Zhang, J., Knoll, A.: A two-arm situated artificial communicator for human-robot cooperative assembly. IEEE Transactions on Industrial Electronics 50(4), 651–658 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moratz, R., Tenbrink, T. (2008). Affordance-Based Human-Robot Interaction . In: Rome, E., Hertzberg, J., Dorffner, G. (eds) Towards Affordance-Based Robot Control. Lecture Notes in Computer Science(), vol 4760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77915-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-77915-5_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77914-8
Online ISBN: 978-3-540-77915-5
eBook Packages: Computer ScienceComputer Science (R0)