Skip to main content

Interpersonal Maps: How to Map Affordances for Interaction Behaviour

  • Conference paper
Towards Affordance-Based Robot Control

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4760))

Abstract

In a study of how the concept of affordances could be applied to interaction behaviour, we introduce the notion of “interpersonal maps”, a geometrical representation of the relationships between a set of proprioceptive and heteroceptive information sources, thus creating a common representation space for comparing one’s own behaviour and the behaviour of others. Such maps can be used to detect specific types of interactions between agents such as imitation. Moreover, in cases of strong couplings between agents, such representations permit to map directly an agent’s body structure onto the structure of an observed body, thus addressing the body correspondence problem. These various cases are studied with several robotic experiments using four-legged robots either acting independently or being engaged in delayed imitation. Through a precise study of the effects of the imitation delay on the structure of the interpersonal maps, we show the potential of this “we-centric” space to account for both imitative and non imitative interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gibson, J.J.: The theory of affordances. In: Shaw, R., Bransford, J. (eds.) Perceiving, Acting, and Knowing, Lawrence Erlbaum Associates, Hillsdale, NJ (1977)

    Google Scholar 

  2. Kaplan, F., Hafner, V.V.: The challenges of joint attention. Interaction Studies 7(2), 129–134 (2006)

    Article  Google Scholar 

  3. Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton-Mifflin, Boston (1979)

    Google Scholar 

  4. Kaplan, F., Hafner, V.V.: Information-theoretic framework for unsupervised activity classification. Advanced Robotics 20(10), 1087–1103 (2006)

    Article  Google Scholar 

  5. Shannon, C., Weaver, W.: The mathematical theory of communication. University of Illinois Press (1962)

    Google Scholar 

  6. Cover, T., Thomas, J.: Elements of information theory. John Wiley and Sons, Inc., Chichester (1991)

    MATH  Google Scholar 

  7. Kullback, S.: Information theory and statistics. Dover, Mineola, NY (1968)

    Google Scholar 

  8. Tononi, G., Edelman, G., Sporns, O.: Complexity and coherency: integrating information in the brain. Trends in cognitive sciences 2(12), 474–484 (1998)

    Article  Google Scholar 

  9. Sporns, O., Pegors, T.: Information-theoretical aspects of embodied artificial intelligence. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139, pp. 74–85. Springer, Heidelberg (2004)

    Google Scholar 

  10. Crutchfield, J.P.: Information and its metric. In: Lam, L., Morris, H.C. (eds.) Nonlinear Structures in Physical Systems – Pattern Formation, Chaos, and Waves, pp. 119–130. Springer, Heidelberg (1990)

    Google Scholar 

  11. Meltzoff, A., Gopnick, A.: The role of imitation in understanding persons and developing a theory of mind. In: Baron-Cohen, S., Tager-Flusberg, H., Cohen, D. (eds.) Understanding other minds, pp. 335–366. Oxford University Press, Oxford (1993)

    Google Scholar 

  12. Moore, C., Corkum, V.: Social understanding at the end of the first year of life. Developmental Review 14, 349–372 (1994)

    Article  Google Scholar 

  13. Gallese, V.: The manifold nature of interpersonal relations: the quest for a common mechanism. In: Frith, C., Wolpert, D. (eds.) The Neuroscience of Social Interaction, pp. 159–182. Oxford University Press, Oxford, UK (2004)

    Google Scholar 

  14. Pierce, D., Kuipers, B.: Map learning with uninterpreted sensors and effectors. Artificial Intelligence 92, 169–229 (1997)

    Article  MATH  Google Scholar 

  15. Kuipers, B., Besson, P., Modayil, J., Provost, J.: Bootstrap learning of foundational representations. Connection Science 18(2) (2006)

    Google Scholar 

  16. Olsson, L., Nehaniv, C., Polani, D.: From unknown sensors and actuators to actions grounded in sensorimotor perceptions. Connection Science 18(2) (2006)

    Google Scholar 

  17. Kuniyoshi, Y., Yorozu, Y., Ohmura, Y., Terada, K., Otani, T., Nagakubo, A., Yamamoto, T.: From humanoid embodiment to theory of mind. In: Embodied Artificial Intelligence, pp. 202–218. Springer, Heidelberg (2004)

    Google Scholar 

  18. Schreiber, T.: Measuring information transfer. Physical Review Letters 85(2), 461–464 (2000)

    Article  Google Scholar 

  19. Olsson, L., Nehaniv, C., Polani, D.: Sensor adaptation and development in robots by entropy. In: CIRA 2005. Proceedings of the 6th IEEE International Symposium on Computational Intelligence in Robotics and Automation, Espoo, Finland, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  20. Amari, S., Nagaoka, H.: Methods of information geometry, vol. 191. Oxford University Press, Oxford, UK (2000) Translations of mathematical monographs

    MATH  Google Scholar 

  21. Lafferty, J., Lebanon, G.: Diffusion kernels on statistical manifolds. Journal of Machine Learning Research 6, 129–163 (2005)

    MathSciNet  Google Scholar 

  22. Hafner, V.V.: Cognitive maps for navigation in open environments. In: IAS-6. Proceedings of the 6th International Conference on Intelligent Autonomous Systems, Venice, Italy, pp. 801–808 (2000)

    Google Scholar 

  23. Duckett, T., Marsland, S., Shapiro, J.: Fast, on-line learning of globally consistent maps. Autonomous Robots 12, 297–300 (2002)

    Article  Google Scholar 

  24. Pierce, D.M.: Map Learning with Uninterpreted Sensors and Effectors. PhD thesis, The University of Texas at Austin (1995)

    Google Scholar 

  25. Steels, L., Kaplan, F.: Aibo’s first words: The social learning of language and meaning. Evolution of Communication 4(1), 3–32 (2000)

    Article  Google Scholar 

  26. Hafner, V.V., Kaplan, F.: Learning to interpret pointing gestures: experiments with four-legged autonomous robots. In: Wermter, S., Palm, G., Elshaw, M. (eds.) Biomimetic Neural Learning for Intelligent Robots. LNCS (LNAI), vol. 3575, pp. 225–234. Springer, Heidelberg (2005)

    Google Scholar 

  27. Schaffer, H.: Early interactive development in studies of mother-infant interaction. In: Proceedings of Loch Lomonds Symposium, pp. 3–18. Academic Press, New York (1977)

    Google Scholar 

  28. Kaye, K.: The mental and social life of babies. University of Chicago Press, Chicago (1982)

    Google Scholar 

  29. Kaplan, F., Oudeyer, P.Y.: The progress-drive hypothesis: an interpretation of early imitation. In: Dautenhahn, K., Nehaniv, C. (eds.) Models and Mechanims of Imitation and Social Learning: Behavioural, Social and Communication Dimensions, pp. 361–377. Cambridge University Press, Cambridge (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erich Rome Joachim Hertzberg Georg Dorffner

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hafner, V.V., Kaplan, F. (2008). Interpersonal Maps: How to Map Affordances for Interaction Behaviour. In: Rome, E., Hertzberg, J., Dorffner, G. (eds) Towards Affordance-Based Robot Control. Lecture Notes in Computer Science(), vol 4760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77915-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77915-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77914-8

  • Online ISBN: 978-3-540-77915-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics