Skip to main content

Quantum Dots for Memories

  • Chapter
  • 3408 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter demonstrates the feasibility of a QD-based memory to replace today’s Flash and dynamic random access memory (DRAM). A novel memory concept based on QDs is presented, enabling very fast write times below picoseconds, only limited by the charge carrier relaxation time. A thermal activation energy of 710 meV for hole emission from InAs/GaAs QDs across an Al0.9Ga0.1As barrier is determined by using time-resolved capacitance spectroscopy. A hole storage time of 1.6 seconds at room temperature is measured, three orders of magnitude longer than the typical DRAM refresh time. In addition, the dependence of the hole storage time in different III–V QDs on their localization energy is determined and a retention time of more than 10 years in (In)(Ga)Sb/AlAs QDs is predicted. Therefore, a future QD-based memory will show improved performance in comparison to both DRAM and Flash having fast write/read times and good endurance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.E. Moore, Electronics 38 (1965)

    Google Scholar 

  2. International Roadmap for Semiconductors (2005 edn., January 2006)

    Google Scholar 

  3. T. Müller, F.F. Schrey, G. Strasser, K. Unterrainer, Appl. Phys. Lett. 83, 3572 (2003)

    Article  Google Scholar 

  4. M. Geller, A. Marent, E. Stock, A.E. Zubkov, I.S. Shulgunova, A.V. Solomonov, D. Bimberg, Appl. Phys. Lett. 89, 232105 (2006)

    Article  Google Scholar 

  5. M. Geller, A. Marent, D. Bimberg, Speicherzelle und Verfahren zum Speichern von Daten. German patent application Nr. 10 2006 059 110.0 (27.10.2006)

    Google Scholar 

  6. L. Geppert, IEEE Spectrum 49 (March 2003)

    Google Scholar 

  7. S.M. Sze, in Future Trends in Microelectronics, ed. by S. Luryi, J. Xu, A. Zaslavsky (Wiley, New York, 1999), p. 291

    Google Scholar 

  8. H. Mizuta, Single- and few-electron memories, in 12th Japanese–German IT Forum, 1998

    Google Scholar 

  9. D.V. Lang, J. Appl. Phys. 45, 3023 (1974)

    Article  CAS  Google Scholar 

  10. P. Blood, J.W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic, London, 1992)

    Google Scholar 

  11. C.M.A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann, N.D. Zakharov, D. Bimberg, P. Werner, Phys. Rev. B 60, 14265 (1999)

    Article  CAS  Google Scholar 

  12. C.M.A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, P.N. Brunkov, B.V. Volovik, S.G. Konnikov, A.R. Kovsh, V.M. Ustinov, Appl. Phys. Lett. 76, 1573 (2000)

    Article  CAS  Google Scholar 

  13. C.M.A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, C. Miesner, T. Asperger, G. Abstreiter, Appl. Phys. Lett. 77, 4169 (2000)

    Article  CAS  Google Scholar 

  14. M. Geller, C. Kapteyn, L. Müller-Kirsch, R. Heitz, D. Bimberg, Appl. Phys. Lett. 82, 2706 (2003)

    Article  CAS  Google Scholar 

  15. C. Kapteyn, Carrier Emission and Electronic Properties of Self-Organized Semiconductor Quantum Dots (Mensch & Buch, Berlin, 2001) [Dissertation, Technische Universität Berlin]

    Google Scholar 

  16. M. Geller, E. Stock, R.L. Sellin, D. Bimberg, Physica E 32, 171 (2006)

    Article  CAS  Google Scholar 

  17. M. Geller, E. Stock, C. Kapteyn, R.L. Sellin, D. Bimberg, Phys. Rev. B 73, 205331 (2006)

    Article  Google Scholar 

  18. O. Stier, M. Grundmann, D. Bimberg, Phys. Rev. B 59, 5688 (1999)

    Article  CAS  Google Scholar 

  19. P.N. Brunkov, A.R. Kovsh, V.M. Ustinov, Y.G. Musikhin, N.N. Ledentsov, S.G. Konnikov, A. Polimeni, A. Patanè, P.C. Main, L. Eaves, C.M.A. Kapteyn, J. Electron. Mater. 28, 486 (1999)

    Article  CAS  Google Scholar 

  20. F. Hatami, M. Grundmann, N.N. Ledentsov, F. Heinrichsdorff, R. Heitz, J. Böhrer, D. Bimberg, S.S. Ruvimov, P. Werner, V.M. Ustinov, P.S. Kop’ev, Z.I. Alferov, Phys. Rev. B 57, 4635 (1998)

    Article  CAS  Google Scholar 

  21. L. Müller-Kirsch, R. Heitz, U.W. Pohl, D. Bimberg, Appl. Phys. Lett. 79, 1027 (2001)

    Article  Google Scholar 

  22. A. Marent, M. Geller, D. Bimberg, A.P. Vasi’ev, E.S. Semenova, A.E. Zhukov, V.M. Ustinov, Appl. Phys. Lett. 89, 072103 (2006)

    Article  Google Scholar 

  23. J. Batey, S.L. Wright, J. Appl. Phys. 59, 200 (1986)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geller, M., Marent, A. (2008). Quantum Dots for Memories. In: Bimberg, D. (eds) Semiconductor Nanostructures. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77899-8_11

Download citation

Publish with us

Policies and ethics