Skip to main content

Time-Dependent Quantum Theory

  • Chapter
Theoretical Femtosecond Physics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 48))

  • 1296 Accesses

The focus of our interest will be the coupling of atomic and molecular systems to laser fields, whose maximal strength is of the order of the field exerted on an electron in the ground state of the hydrogen atom. This restriction allows us to describe the field matter interaction non-relativistically by using the time-dependent Schrödinger equation (TDSE) [1]. Analytical solutions of this linear partial differential equation are scarce, however, even in the case without external driving.

In this chapter, we continue laying the foundations for the later chapters by reviewing some basic properties of the time-dependent Schrödinger equation and by discussing two analytically solvable cases. In the following, we will then consider some general ways to rewrite, respectively, solve the time-dependent Schrödinger equation. Formulating the solution with the help of the Feynman path integral will allow us to consider an intriguing approximate, so-called semiclassical approach to the solution of the time-dependent Schrödinger equation by using classical trajectories. The last part of this chapter deals with numerical solution techniques, that will be referred to in later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Schrödinger, Ann. Phys. (Leipzig) 79, 361 (1926)

    Article  MATH  Google Scholar 

  2. E. Schrödinger, Ann. Phys. (Leipzig) 81, 109 (1926)

    Google Scholar 

  3. J.S. Briggs, J.M. Rost, Eur. Phys. J. D 10, 311 (2000)

    Article  ADS  Google Scholar 

  4. V.A. Mandelshtam, J. Chem. Phys. 108, 9999 (1998)

    Article  ADS  Google Scholar 

  5. E. Schrödinger, Die Naturwissenschaften 14, 664 (1926)

    Article  ADS  MATH  Google Scholar 

  6. E.J. Heller, J. Chem. Phys. 62, 1544 (1975)

    Article  ADS  Google Scholar 

  7. W. Kinzel, Phys. B. 51, 1190 (1995)

    Article  MathSciNet  Google Scholar 

  8. F. Grossmann, J.M. Rost, W.P. Schleich, J. Phys. A 30, L277 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  10. P.A.M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Oxford, London, 1958)

    MATH  Google Scholar 

  11. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965). For errata see e.g. http://www.oberlin.edu/physics/dyster/FeynmanHibbs/

  12. L.S. Schulman, Techniques and Applications of Path Integration (Dover, Mineola, 2006)

    Google Scholar 

  13. J.H. van Vleck, Proc. Acad. Nat. Sci. USA 14, 178 (1928)

    Article  MATH  ADS  Google Scholar 

  14. M.C. Gutzwiller, J. Math. Phys. 8, 1979 (1967)

    Article  ADS  Google Scholar 

  15. S. Grossmann, Funktionalanalysis II (Akademic, Wiesbaden, 1977)

    MATH  Google Scholar 

  16. D.J. Tannor, Introduction to Quantum Mechanics: A Time-dependent Perspective (University Science Books, Sausalito, 2007)

    Google Scholar 

  17. W.R. Salzman, J. Chem. Phys. 85, 4605 (1986)

    Article  ADS  Google Scholar 

  18. M.H. Beck, A. Jäckle, G.A. Worth, H.D. Meyer, Phys. Rep. 324, 1 (2000)

    Article  ADS  Google Scholar 

  19. D. Kohen, F. Stillinger, J.C. Tully, J. Chem. Phys. 109, 4713 (1998)

    Article  ADS  Google Scholar 

  20. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964)

    MATH  Google Scholar 

  21. H. Sambe, Phys. Rev. A 7, 2203 (1973)

    Article  ADS  Google Scholar 

  22. M. Kleber, Phys. Rep. 236, 331 (1994)

    Article  ADS  Google Scholar 

  23. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)

    Google Scholar 

  24. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, 2nd edn. (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  25. J.H. Shirley, Phys. Rev. 138, B979 (1965)

    Article  ADS  Google Scholar 

  26. J.C. Light, in Time-Dependent Quantum Molecular Dynamics, ed. by J. Broeckhove, L. Lathouwers (Plenum, New York, 1992), p. 185

    Chapter  Google Scholar 

  27. U. Peskin, N. Moiseyev, Phys. Rev. A 49, 3712 (1994)

    Article  ADS  Google Scholar 

  28. W. Witschel, J. Phys. A 8, 143 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  29. J.A. Fleck, J.R. Morris, M.D. Feit, Appl. Phys. 10, 129 (1976)

    Article  ADS  Google Scholar 

  30. M.D. Feit, J.A. Fleck, A. Steiger, J. Comp. Phys. 47, 412 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Braun, C. Meier, V. Engel, Comp. Phys. Commun. 93, 152 (1996)

    Article  ADS  Google Scholar 

  32. M. Frigo, S.G. Johnson, Proceedings of the IEEE 93(2), 216 (2005). Special issue on “Program Generation, Optimization, and Platform Adaptation”

    Google Scholar 

  33. A. Vibok, G.G. Balint-Kurti, J. Phys. Chem 96, 8712 (1992)

    Article  Google Scholar 

  34. A. Askar, A.S. Cakmak, J. Chem. Phys. 68, 2794 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  35. C. Leforestier, R.H. Bisseling, C. Cerjan, M.D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.D. Meyer, N. Lipkin, O. Roncero, R. Kosloff, J. Comp. Phys. 94, 59 (1991)

    Article  MATH  ADS  Google Scholar 

  36. H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81, 3967 (1984)

    Article  ADS  Google Scholar 

  37. S.K. Gray, D.W. Noid, B.G. Sumpter, J. Chem. Phys. 101, 4062 (1994)

    Article  ADS  Google Scholar 

  38. M.L. Brewer, J.S. Hulme, D.E. Manolopoulos, J. Chem. Phys. 106, 4832 (1997)

    Article  ADS  Google Scholar 

  39. H. Yoshida, Phys. Lett. A 150, 262 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  40. W.H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1990)

    MATH  Google Scholar 

  41. E.J. Heller, J. Chem. Phys. 94, 2723 (1991)

    Article  ADS  Google Scholar 

  42. J.R. Klauder, in Random Media, ed. by G. Papanicolauou (Springer, Berlin Heidelberg New York, 1987), p. 163

    Chapter  Google Scholar 

  43. F. Grossmann, J. A. L. Xavier, Phys. Lett. A 243, 243 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. M.F. Herman, E. Kluk, Chem. Phys. 91, 27 (1984)

    Article  ADS  Google Scholar 

  45. K.G. Kay, Chem. Phys. 322, 3 (2006)

    Article  ADS  Google Scholar 

  46. K.G. Kay, J. Chem. Phys. 100, 4377 (1994)

    Article  ADS  Google Scholar 

  47. F. Grossmann, J. Chem. Phys. 125, 014111 (2006)

    Article  ADS  Google Scholar 

  48. E. Kluk, M.F. Herman, H.L. Davis, J. Chem. Phys. 84, 326 (1986)

    Article  ADS  Google Scholar 

  49. F. Grossmann, M. Herman, J. Phys. A 35, 9489 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. M. Mizrahi, J. Math. Phys. 16, 2201 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  51. W.P. Schleich, Quantum Optics in Phase Space (Wiley, Berlin, 2000)

    Google Scholar 

  52. E.N. Economou, Green’s Functions in Quantum Physics, 3rd edn. (Springer, Berlin Heidelberg New York, 2006)

    Google Scholar 

  53. E.J. Heller, in Chaos and Quantum Physics, ed. by M.J. Giannoni, A. Voros, J. Zinn-Justin, Les Houches Session LII (Elsevier, Amsterdam, 1991), pp. 549–661

    Google Scholar 

  54. G.-L. Ingold, in Coherent Evolution in Noisy Environments, ed. by A. Buchleitner and K. Hornberger, Lecture Notes in Physics 611 (Springer, Berlin Heidelberg New York, 2002), pp. 1–53

    Google Scholar 

  55. L.E. Reichl, The Transition to Chaos, 2nd edn. (Springer, Berlin Heidelberg New York, 2004)

    Book  MATH  Google Scholar 

  56. G.D. Billing, The Quantum Classical Theory (Oxford University Press, New York, 2003)

    MATH  Google Scholar 

  57. F. Grossmann, Comments At. Mol. Phys. 34, 141 (1999)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Time-Dependent Quantum Theory. In: Theoretical Femtosecond Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77897-4_2

Download citation

Publish with us

Policies and ethics