Effect of Sevoflurane on Subdural Intracranial Pressure and Cerebral Haemodynamics During Craniotomy

  • Georg E. Cold
  • Helle Bundgaard


Volatile anaesthetics act as cerebral vasodilators with the potential to increase cerebral blood flow, cerebral blood volume and ICP. In experimental studies sevoflurane is a less potent vasodilator than isoflurane and halothane, and sevoflurane has been advocated for neurosurgical anaesthesia. However, concerning the effect of ICP, the results in experimental studies are conflicting. In this chapter we discusses sevoflurane and the dose-related changes in cerebrovascular resistance, cerebral blood flow, subdural ICP and relative CO2 reactivity in patients undergoing craniotomy for cerebral tumour.


Cerebral Blood Flow Cerebral Autoregulation Sevoflurane Anaesthesia Cerebral Tumour Cerebral Vasodilator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Åkeson J, Messeter K, Rosen I (1993) Cerebral haemodynamic and electrocortical CO2 reactivity in pigs anaesthetized with fentanyl, nitrous oxide and pancuronium. Acta Anaesthesiol Scand 37:85–91PubMedGoogle Scholar
  2. Artru AA, Lam AM, Johnson JO et al (1997) Intracranial pressure, middle cerebral artery flow velocity, and plasma inorganic fluoride concentrations in neurosurgical patients receiving sevoflurane or isoflurane. Anesth Analg 85:587–592PubMedCrossRefGoogle Scholar
  3. Baker KZ (1997) Desflurane and sevoflurane are valuable additions to the practice of neuroanaesthesiology. J Neurosurg Anesthesiol 9:66–68PubMedCrossRefGoogle Scholar
  4. Bundgaard H, von Oettingen G, Larsen KM et al (1998) Effects of sevoflurane on intracranial pressure, cerebral blood flow and cerebral metabolism. Acta Anaesthesiol Scand 42:621–627PubMedGoogle Scholar
  5. Cho S, Fujigaki T, Uchiyama Y et al (1996) Effects of sevoflurane with and without nitrous oxide on human cerebral circulation. Anesthesiology 85:755–760PubMedCrossRefGoogle Scholar
  6. Drummond JC, Todd MM, Scheller MS et al (1986) A comparison of the direct vasodilating potencies of halothane and isoflurane in the New Zealand white rabbit. Anesthesiology 65:462–467PubMedCrossRefGoogle Scholar
  7. Inada T, Shingu K, Uchida M et al (1996) Changes in the cerebral arteriovenous oxygen content difference by surgical incision are similar during sevoflurane and isoflurane anaesthesia. Can. J Anaesth 43:1019–1024PubMedCrossRefGoogle Scholar
  8. Kitaguchi K, Kuro M, Nakajia T et al (1992) The change in cerebral blood flow during hypotensive anesthesia induced by prostaglandin E1. Masui 41:766–771PubMedGoogle Scholar
  9. Kitaguchi K, Ohsumi H, Kuro M et al (1993) Effects of sevoflurane on cerebral circulation and metabolism in patients with ischemic cerebrovascular disease. Anesthesiology 79:704–709PubMedCrossRefGoogle Scholar
  10. Kotani J, Sugioka S, Momota Y et al (1992) Effect of sevoflurane on intracranial pressure, sagittal sinus pressure, and the intracranial volume-pressure relation in cats. J Neurosurg Anesthesiol 4:194–198PubMedCrossRefGoogle Scholar
  11. Kuroda Y, Murakami M, Tsuruta J et al (1996) Preservation of the ratio of cerebral blood flow/metabolic rate of oxygen during prolonged anesthesia with isoflurane, sevoflurane, and halothane in humans. Anesthesiology 84:555–561PubMedCrossRefGoogle Scholar
  12. Kuroda Y, Murakami M, Tsuruta J et al (1997) Blood flow velocity of middle cerebral artery during prolonged anesthesia with halothane, isoflurane, and sevoflurane in humans. Anesthesiology 87:527–532PubMedCrossRefGoogle Scholar
  13. Madsen PL, Holm S, Herning M (1993) Average blood flow and oxygen uptake in the human brain during resting wakefulness: a critical appraisal of the Kety-Schmidt technique. J Cereb Blood Flow Metab 13:646–655PubMedGoogle Scholar
  14. Michenfelder JD (1974) The interdependency of cerebral function and metabolic effects following massive doses of thiopental in the dog. Anesthesiology 41:231–237PubMedCrossRefGoogle Scholar
  15. Michenfelder JD, Theye RA (1969) The effects of prolonged hypocapnia and dilutional anemia on canine cerebral metabolism and blood flow. Anesthesiology 31:449–457PubMedCrossRefGoogle Scholar
  16. Mielck F, Stephan H, Weyland A et al (1999) Effect of one minimum alveolar anesthesic concentration sevoflurane on cerebral metabolism, blood flow, and CO2 reactivity in cardiac patients. Anesth Analg 89:364–369PubMedCrossRefGoogle Scholar
  17. Newberg L, Milde J, Michenfelder J (1983) The cerebral metabolic effects of isoflurane at and above concentrations that suppress cortical electrical activity. Anesthesiology 59:23–28PubMedCrossRefGoogle Scholar
  18. Obrist WD, Langfitt TW, Jaggi JL et al (1984) Cerebral blood flow and metabolism in comatose patients with head injury. Relationship to intracranial hypertension. J Neurosurg 61:241–253PubMedGoogle Scholar
  19. Olesen J, Paulson OB, Lassen NA (1971) Regional cerebral blood flow in man determined by the initial slope of the clearance of the intra-arterially injected 133Xe. Stroke 2:519–540PubMedGoogle Scholar
  20. Petersen KD, Landsfeldt U, Cold GE et al (2003) Intracranial pressure and cerebral hemodynamic in patients with cerebral tumours. A randomised prospective study of patients subjected to craniotomy in propofol-fentanyl, sioflurane-fentanyl, or sevoflurane-fentanyl anesthesia. Anesthesiology 98:329–336PubMedCrossRefGoogle Scholar
  21. Scheller MS, Tateichi A, Drummond JC et al (1988) The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology 68:548–551PubMedCrossRefGoogle Scholar
  22. Scheller MS, Nakakimura K, Fleischer JE et al (1990) Cerebral effects of sevoflurane in the dog: comparison with isoflurane and enflurane. Br J Anaesth 65:388–392PubMedCrossRefGoogle Scholar
  23. Sugioka S (1992) Effects of sevoflurane on intracranial pressure and formation and absorption of cerebrospinal fluid in cats. Masui 41:1434–1442PubMedGoogle Scholar
  24. Summors AC, Gupta AK, Matta BF (1999) Dynamic cerebral autoregulation during sevoflurane anesthesia: a comparison with isoflurane. Anesth Analg 88:341–345PubMedCrossRefGoogle Scholar
  25. Takahashi H, Murata K, Ikeda K (1993) Sevoflurane does not increase intracranial pressure in hyperventilated dogs. Br J Anaesth 71:551–555PubMedCrossRefGoogle Scholar
  26. Talke P, Caldwell JE, Richardson CA (1999) Sevoflurane increases lumbar cerebrospinal fluid pressure in normocapnic patients undergoing transsphenoidal hypophysectomy. Anesthesiology 91:127–130PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Georg E. Cold
    • 1
  • Helle Bundgaard
    • 2
  1. 1.Aarhus VDenmark
  2. 2.Department of NeuroanaesthesiaAarhus University HospitalAarhus CDenmark

Personalised recommendations