Advertisement

Comparative Studies of Therapeutic Measures to Reduce Subdural Intracranial Pressure During Craniotomy

  • Mads Rasmussen
  • Georg E. Cold
Chapter
  • 809 Downloads

Abstract

The level of ICP is of importance in the surgical management of space-occupying cerebral lesions. For many years hyperventilation-induced reduction of cerebral blood volume and mannitol treatment based on osmotic withdrawal of brain tissue water have been used to reduce dural tension before opening of dura mater. Other therapeutic measures to reduce ICP during craniotomy include intravenous administration of indomethacin, placing the patient in the reverse Trendelenburg position and decompression by puncture of cystic tumours. In this chapter three studies are presented. The ICP-reducing effects of hyperventilation, 10 degrees reverse Trendelenburg position, mannitol treatment, indomethacin or surgical decompression in patients subjected to craniotomy in the supine and prone positions in either propofol-fentanyl or propofol-remifentanil anaesthesia are discussed.

Keywords

Intracranial Hypertension Cerebral Blood Volume Surgical Decompression Cerebral Tumour Significant Intergroup Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biestro AA, Alberti RA, Soca AE et al (1995) Use of indomethacin in brain-injured patients with cerebral perfusion pressure impairment: preliminary report. J Neurosurg 83:627–630PubMedGoogle Scholar
  2. Bundgaard H, Jensen K, Cold GE et al (1996) Effects of perioperative indomethacin on intracranial pressure, cerebral blood flow, and cerebral metabolism in patients subjected to craniotomy for cerebral tumours. J Neurosurg Anesthesiol 8:273–279PubMedCrossRefGoogle Scholar
  3. Bundgaard H, Landsfeldt U, Cold GE (1998) Subdural monitoring of ICP during craniotomy: thresholds of cerebral swelling/herniation. Acta Neurochir Suppl 71:276–279PubMedGoogle Scholar
  4. Burke AM, Quest DO, Chien S et al (1981) The effects of mannitol on blood viscosity. J Neurosurg 55:550–553PubMedGoogle Scholar
  5. Cold GE, Tange M, Jensen TM et al (1996) Subdural pressure measurement during craniotomy. Correlation with tactile estimation of dural tension and brain herniation after opening of dura. Br J Neurosurg 10:69–75PubMedCrossRefGoogle Scholar
  6. Dahl B, Bergholt B, Cold GE et al (1996) CO2 and indomethacin vasoreactivity in patients with head injury. Acta Neurochir 138:265–273CrossRefGoogle Scholar
  7. Greenberg JH, Alavi A, Reivich M et al (1978) Local cerebral blood volume response to carbon dioxide in man. Circ Res 43:324–331PubMedGoogle Scholar
  8. Haure P, Cold GE, Hansen TM et al (2003) The ICP-lowering effect of 10° reverse Trendelenburg position during craniotomy is stable during a 10-minute period. J Neurosurg Anesthesiol 15:297–301PubMedCrossRefGoogle Scholar
  9. Hongo K, Kabayashi S, Yokoh A (1987) Monitoring retraction pressure in the brain. J Neurosurg 66:270–275PubMedGoogle Scholar
  10. Imberti R, Fuardo M, Bellinzona G (2005) The use of indomethacin in the treatment of plateau waves: effects on cerebral perfusion and oxygenation. J Neurosurg 102:455–459PubMedGoogle Scholar
  11. Jafar JJ, Johns LM, Mullan SF (1986) The effect of mannitol on cerebral blood flow. J Neurosurg 64:754–759PubMedGoogle Scholar
  12. James HE (1980) Methodology for the control of intracranial pressure with hypertonic mannitol. Acta Neurochir (Wien) 51:161–172CrossRefGoogle Scholar
  13. Jensen K, Ohrström J, Cold GE et al (1991) The effects of indomethacin on intracranial pressure, cerebral blood flow and cerebral metabolism in patients with severe head injury and intracranial hypertension. Acta Neurchir 108:116–121CrossRefGoogle Scholar
  14. Jensen K, Kjærgaard S, Malte E et al (1996) Effect of graduated intravenous and standard rectal doses of indomethacin on cerebral blood flow in healthy volunteers. J Neurosurg Anesthesiol 8:111–116PubMedGoogle Scholar
  15. Lin W, Paczynski RP, Kuppusamy K et al (1997) Quantitative measurements of regional cerebral blood volume using MRI in rats: effects of arterial carbon dioxide tension and mannitol. Magn Reson Med 38:420–428PubMedCrossRefGoogle Scholar
  16. Nath F, Galbraith S (1986) The effect of mannitol on cerebral white matter water content. J Neurosurg 65:41–43PubMedGoogle Scholar
  17. Nilsson F, Björkman S, Rosen I et al (1995) Cerebral vasoconstriction by indomethacin in intracranial hypertension. Anesthesiology 83:1283–1292PubMedCrossRefGoogle Scholar
  18. Petersen KD, Landsfeldt U, Cold GE et al (2003) Intracranial pressure and cerebral hemodynamic in patients with cerebral tumours: a randomized prospective study of patients subjected to craniotomy in propofol-fentanyl, isoflurane-fentanyl, or sevoflurane-fentanyl anesthesia. Anesthesiology 98:329–336PubMedCrossRefGoogle Scholar
  19. Rasmussen M (2005) Treatment of elevated intracranial pressure with indomethacin: friend or foe? Acta Anaesthesiol Scand 49:341–350PubMedCrossRefGoogle Scholar
  20. Rasmussen M, Bundgaard H, Cold GE (2004) Craniotomy for supratentorial brain tumours: risk factors of brain swelling after opening of the dura. J Neurosurg 101:621–626PubMedCrossRefGoogle Scholar
  21. Ravussin P, Archer DP, Tyler JL et al (1986a) Effects of rapid mannitol infusion on cerebral blood volume. J Neurosurg 64:104–113Google Scholar
  22. Ravussin P, Chiolero R, Buchser E et al (1986b) CSF pressure changes following mannitol in patients undergoing craniotomy. Anesthesiology 65:A303CrossRefGoogle Scholar
  23. Rolighed Larsen JK, Haure P, Cold GE (2002) Reverse Trendelenburg position reduces intracranial pressure during craniotomy. J Neurosurg Anesthesiol 14:16–21PubMedCrossRefGoogle Scholar
  24. Rosenørn J (1987) Self-retaining brain retractor pressure during intracranial procedures. Acta Neurochir 85:17–22CrossRefGoogle Scholar
  25. Stephan H, Sonntag H, Schenk HD et al (1987) Einfluss von Disoprivan (propofol) auf die Durchblutung und Sauerstoffverbrach des Gehirns und die CO2 Reaktivität der Hirngefässe beim Menschen. Anaesthesist 36:60–65PubMedGoogle Scholar
  26. Takagi H, Tanaka M, Ohwada T et al (1993) Pharmacokinetic analysis of mannitol in relation to the decrease of ICP. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 596–600Google Scholar
  27. Tankisi A, Cold GE (2007) Optimal reverse Trendelenburg position in patients undergoing craniotomy for cerebral tumours. J Neurosurg 106:239–244PubMedCrossRefGoogle Scholar
  28. Tankisi A, Rolighed Larsen J, Rasmussen M et al (2002) The effects of 10 degrees reverse Trendelenburg position on ICP and CPP in prone-positioned patients subjected to craniotomy for occipital or cerebellar tumours. Acta Neurochir (Wien) 144:665–670CrossRefGoogle Scholar
  29. Tankisi A, Rasmussen M, Juul N et al (2006) The effects of 10° reverse Trendelenburg position (rTp) on subdural intracranial pressure and cerebral perfusion pressure in patients subjected to craniotomy for cerebral aneurysm. J Neurosurg Anesthesiol 18:11–17PubMedCrossRefGoogle Scholar
  30. Vandesteene A, Trempont V, Engelman E et al (1998) Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia 43(suppl):42–43Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mads Rasmussen
    • 1
  • Georg E. Cold
    • 2
  1. 1.Department of NeuroanaesthesiaAarhus University HospitalAarhus CDenmark
  2. 2.Aarhus VDenmark

Personalised recommendations