Effect of a Propofol Bolus Dose on Subdural Intracranial Pressure and Cerebral Haemodynamics During General Anaesthesia for Craniotomy in Patients with Supratentorial Cerebral Tumours

  • Niels Juul
  • Georg E. Cold


Like barbiturates, propofol suppresses cerebral blood flow and cerebral metabolic rate of oxygen. As a consequence, a decrease in ICP is also expected. Rapid intraoperative reduction of ICP with thiopental has been demonstrated. In patients with head injury, propofol decreases both ICP and mean arterial blood pressure. Cerebral perfusion pressure, however, decreases as well, making the use of propofol in patients with head injury controversial. In patients subjected to craniotomy for space-occupying lesions in propofol-fentanyl or propofol-remifentanil anaesthesia, the effect of a bolus dose of propofol are poorly studied. In this chapter the effect of a propofol bolus during maintenance of anaesthesia with either propofol-remifentanil or propofol-fentanyl is studied, and differences in cerebral haemodynamic parameters are discussed.


Cerebral Blood Flow Bolus Dose Cerebral Autoregulation Cerebral Blood Flow Velocity Cerebral Haemodynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artru AA, Shapira Y, Bowdle A (1992) Electroencephalogram, cerebral metabolism, and vascular responses to propofol anesthesia in dogs. J Neurosurg Anesthesiol 4:99–109PubMedCrossRefGoogle Scholar
  2. Cenic A, Craen RA, Howard-Lech VL et al (2000) Cerebral blood volume and blood flow at varying arterial carbon dioxide tension levels in rabbits during propofol anaesthesia. Anesth Analg 90:1376–1383PubMedCrossRefGoogle Scholar
  3. Conti A, Iacopino DG, Fodale V et al (2006) Cerebral haemodynamic changes during propofol-remifentanil or sevoflurane anaesthesia: transcranial Doppler study under bispectral index monitoring. Br J Anaesth 97:333–339PubMedCrossRefGoogle Scholar
  4. Craen RA, Gelb AW, Murkin JM et al (1992) CO2 responsiveness of cerebral blood flow is maintained during propofol anaesthesia. Can J Anaesth A7Google Scholar
  5. Ederberg S, Westerlind A, Houltz E et al (1998) The effects of propofol on cerebral blood flow velocity and cerebral oxygen extraction during cardiopulmonary bypass. Anest Analg 86:1201–1206CrossRefGoogle Scholar
  6. Fox J, Gelb AW, Enns J et al (1992) The responsiveness of cerebral blood flow to changes in arterial carbon dioxide is maintained during propofol-nitrous oxide anesthesia in humans. Anesthesiology 77:453–456PubMedCrossRefGoogle Scholar
  7. Harrison JM, Girling KJ, Mahajan RP (1999) Effects of target-controlled infusion of propofol on the transient hyperaemic response and carbon dioxide reactivity in the middle cerebral artery. Br J Anaesth 83:839–844PubMedGoogle Scholar
  8. Hartung HJ (1987) Beeinflussung des Intrakraniellen Druckes durch Propofol (disoprivan). Anaesthesist 36:66–68PubMedGoogle Scholar
  9. Hemelrijck JV, Tempelhoff R, White PF et al (1992) EEG-assisted titration of propofol infusion during neuroanesthesia: effect of nitrous oxide. J Neurosurg Anesthesiol 4:11–20PubMedCrossRefGoogle Scholar
  10. Iwata M, Kawaguchi M, Inoue S et al (2006) Effects of increasing concentrations of propofol on jugular venous bulb oxygen saturation in neurosurgical patients under normothermic and mildly hypothermic conditions. Anesthesiology 104:33–38PubMedCrossRefGoogle Scholar
  11. Jansen GF, Kagenaar D (1993) Effects of propofol in the relation between CO2 and cerebral blood flow velocity. Anesth Analg 76:S163Google Scholar
  12. Jansen GF, van Praagh BH, Kedaria MB et al (1999) Jugular bulb oxygen saturation during propofol and isoflurane/nitrous oxide anesthesia in patients undergoing brain tumour surgery. Anesth Analg 9:358–363CrossRefGoogle Scholar
  13. Kaisti KK, Metsähonkala L, Teräs M et al (2002) Effects of surgical levels of propofol and seflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology 96:1358–1370PubMedCrossRefGoogle Scholar
  14. Kaisti KK, Långsjö JW, Aalto S et al (2003) Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99:603–613PubMedCrossRefGoogle Scholar
  15. Karsli C, Luginbuehl I, Bissonnette B (2004) The cerebrovascular response to hypocapnia in children receiving propofol. Anesth Analg 99:1049–1052PubMedCrossRefGoogle Scholar
  16. Kawano Y, Kawaguchi M, Inoue S et al (2004) Jugular bulb oxygen saturation under propofol or sevoflurane/nitrous oxide anesthesia during deliberate mild hypothermia in neurosurgical patients. J Neurosurg Anesthesiol 16:6–10PubMedCrossRefGoogle Scholar
  17. Lagerkranser M, Stånge K, Sollevi A (1997) Effects of propofol on cerebral blood flow, metabolism, and cerebral autoregulation in the anesthetized pig. J Neurosurg Anesthesiol 9:188–193PubMedCrossRefGoogle Scholar
  18. Ludbrook GL, Visco E, Lam AM (2002) Relation between brain concentrations, electroencephalogram, middle cerebral artery blood flow velocity, and cerebral oxygen extraction during induction of anesthesia. Anesthesiology 97:1363–1370PubMedCrossRefGoogle Scholar
  19. Madsen JB, Guldager H, Jensen FM (1989) CBF and CMRO2 during neuroanaesthesia with continuous infusion of propofol. Acta Anaesthesiol Scand Suppl 91:33:143Google Scholar
  20. Manohar M (1986) Regional brain blood flow and cerebral cortical O2 consumption during sevoflurane anesthesia in healthy isocapnic swine. J Cardiovasc Pharmacol 8:1268–1275PubMedCrossRefGoogle Scholar
  21. Matta BF, Lam AM, Strebel S, Mayberg TS (1995) Cerebral pressure autoregulation and carbon dioxide reactivity during propofol-induced EEG suppression. Br J Anaesth 74:159–163PubMedCrossRefGoogle Scholar
  22. McCulloch TJ, Visco E, Lam AM (2000) Graded hypercapnia and cerebral autoregulation during sevoflurane or porpofol anaesthesia. Anesthesiology 93:1205–1209PubMedCrossRefGoogle Scholar
  23. Mielck F, Stephan H, Weyland A et al (1999) Effects of one minimum alveolar anesthetic concentration sevoflurane on cerebral metabolism, blood flow, and CO2 reactivity in cardiac patients. Anesth Analg 89:364–369PubMedCrossRefGoogle Scholar
  24. Mirzai H, Tekin I, Tarhan S et al (2004) Effect of propofol and clonidine on cerebral blood flow velocity and carbon dioxide reactivity in the middle cerebral artery. J Neurosurg Anesthesiol 16:1–5PubMedCrossRefGoogle Scholar
  25. Munoz HR, Nunez GE, de la Fuente JE et al (2002) The effect of nitrous oxide on jugular bulb saturation during remifentanil plus target-controlled infusion propofol or sevoflurane in patients with brain tumours. Anesth Analg 94:389–392PubMedCrossRefGoogle Scholar
  26. Petersen KD, Landsfeldt U, Cold GE et al (2003). Intracranial pressure and cerebral hemodynamic in patients with cerebral tumours. A randomized prospective study of patients subjected to craniotomy in propofol/fentanyl, isoflurane/fentanyl or sevoflurane/fentanyl anesthesia. Anesthesiology 98:329–336PubMedCrossRefGoogle Scholar
  27. Ramani R, Todd MM, Warner DS (1992) A dose-response study of the influence of propofol on cerebral blood flow, metabolism and the electroencephalogram in the rabbit. J Neurosurg Anesthesiol 4:110–119PubMedCrossRefGoogle Scholar
  28. Scheller MS, Tateichi A, Drummond JC et al (1988) The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate of oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbits. Anesthesiology 68:548–551PubMedCrossRefGoogle Scholar
  29. Scheller MS, Nakakimura K, Fleischer JE et al (1990) Cerebral effects of sevoflurane in the dog: comparison with isoflurane and enflurane. Br J Anaesth 65:388–392PubMedCrossRefGoogle Scholar
  30. Shapiro HM, Galindo A, Wyte SR et al (1973) Rapid intraoperative reduction of ICP with thiopental. Br J Anaesth 45:1057–1061PubMedCrossRefGoogle Scholar
  31. Stephan H, Sonntag H, Schenk HD et al (1987) Einfluss von Disoprivan (Propofol) auf die Durchblutung und Sauerstoffverbrauch des Gehirns and die CO2 Reaktivität der Hirngefässe beim Menschen. Anaesthesist 36:60–65PubMedGoogle Scholar
  32. Stephan H, Sonntag H, Seyde WC et al (1988) Energy and amino acid metabolism in the human brain under Disoprivan anesthesia with various PaCO2 values. Anaesthetist 37:297–304Google Scholar
  33. Strebel S, Kaufmann M, Guardiola P-M et al (1994) Cerebral vasomotor responsiveness to carbon dioxide is preserved during propofol and midazolam anaesthesia in humans. Anaesth Analg 78:884–888CrossRefGoogle Scholar
  34. Strebel S, Lam AM, Matta B et al (1995) Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology 83:66–76PubMedCrossRefGoogle Scholar
  35. Vandesteene A, Trempont V, Engelman E et al (1988) Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia 43(suppl):42–43PubMedCrossRefGoogle Scholar
  36. Watts ADJ, Eliasziw M, Gelb AW (1998) Propofol and hyperventilation for the treatment of increased intracranial pressure in rabbits. Anesth Analg 87:564–568PubMedCrossRefGoogle Scholar
  37. Weinstabl C, Mayer N, Hammerle AF et al (1990) Effekte von Propofolbolusgaben auf das Intrakranielle Druckverhalten beim Schädel-Hirn-Trauma. Anaesthesist 39:521–524PubMedGoogle Scholar
  38. Werner C, Hoffman WE, Segil LJ et al (1990) Effects of propofol on cerebral and spinal cord blood flow autoregulation in rats. Anesthesiology 73:No 3A, A694Google Scholar
  39. Werner C, Hoffman WE, Kochs E et al (1992) The effects of propofol on cerebral blood flow in correlation to cerebral blood flow velocity in dogs. J Neurosurg Anesthesiol 4:41–46PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Niels Juul
    • 1
  • Georg E. Cold
    • 2
  1. 1.Department of NeuroanaesthesiaAarhus University HospitalAarhus CDenmark
  2. 2.Aarhus VDenmark

Personalised recommendations