Skip to main content

MRA of the Peripheral Vasculature

  • Chapter
Clinical Blood Pool MR Imaging
  • 556 Accesses

Abstract

Since the first description of moving-bed contrast-enhanced magnetic resonance angiography (CE-MRA) in 1998 [1], the technique has seen numerous refinements and is now widely applied in clinical practice throughout the world. The most widely used technique is to obtain a luminogram during first arterial passage of an extracellular MR contrast agent, often in combination with background subtraction to improve vessel-to-background contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ho KY, Leiner T, de Haan MW, Kessels AG, Kitslaar PJ, van Engelshoven JM (1998) Peripheral vascular tree stenoses: evaluation with moving-bed infusion-tracking MR angiography. Radiology 206:683–692

    PubMed  CAS  Google Scholar 

  2. Lauffer RB, Parmelee DJ, Dunham SU, et al (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538

    PubMed  CAS  Google Scholar 

  3. Klessen C, Hein PA, Huppertz A, et al. (2007) First pass whole-body magnetic resonance angiography (MRA) using the blood-pool contrast medium gadofosveset trisodium: comparison to gadopentetate dimeglumine. Invest Radiol 42:659–664

    Article  PubMed  Google Scholar 

  4. Hartmann M, Wiethoff AJ, Hentrich HR, Rohrer M (2006) Initial imaging recommendations for Vasovist angiography. Eur Radiol 16 [Suppl 2]:B15–23

    CAS  Google Scholar 

  5. Wang MS, Haynor DR, Wilson GJ, Leiner T, Maki JH (2007) Maximizing contrast-to-noise ratio in ultra-high resolution peripheral MR angiography using a blood pool agent and parallel imaging. J Magn Reson Imaging 26:580–588

    Article  PubMed  CAS  Google Scholar 

  6. Winterer JT, Scheffler K, Paul G, et al. (2000) Optimization of contrast-enhanced MR angiography of the hands with a timing bolus and elliptically reordered 3D pulse sequence. J Comput Assist Tomogr 24:903–908

    Article  PubMed  CAS  Google Scholar 

  7. Wentz KU, Frohlich JM, von Weymarn C, Patak MA, Jenelten R, Zollikofer CL (2003) High-resolution magnetic resonance angiography of hands with timed arterial compression (tac-MRA). Lancet 361:49–50

    Article  PubMed  Google Scholar 

  8. Bilecen D, Aschwanden M, Heidecker HG, Bongartz G (2004) Optimized assessment of hand vascularization on contrast-enhanced MR angiography with a subsystolic continuous compression technique. AJR Am J Roentgenol 182:180–182

    PubMed  Google Scholar 

  9. Wikstrom J, Johansson L, Karacagil S, Ahlstrom H (2003) The importance of adjusting for differences in proximal and distal contrast bolus arrival times in contrast-enhanced iliac artery magnetic resonance angiography. Eur Radiol 13:957–963

    PubMed  CAS  Google Scholar 

  10. Foo TK, Saranathan M, Prince MR, Chenevert TL (1997) Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiology 203:275–280

    PubMed  CAS  Google Scholar 

  11. Luccichenti G, Cademartiri F, Ugolotti U, Marchesi G, Pavone P (2003) Magnetic resonance angiography with elliptical ordering and fluoroscopic triggering of the renal arteries. Radiol Med (Torino) 105:42–47

    Google Scholar 

  12. Siegelman ES, Charafeddine R, Stolpen AH, Axel L (2000) Suppression of intravascular signal on fat-saturated contrast-enhanced thoracic MR arteriograms. Radiology 217:115–118

    PubMed  CAS  Google Scholar 

  13. Tay KY, JM UK-I, Trivedi RA, et al (2005) Imaging the vertebral artery. Eur Radiol 15:1329–1343.

    Article  PubMed  Google Scholar 

  14. Wu C, Zhang J, Ladner CJ, Babb JS, Lamparello PJ, Krinsky GA (2005) Subclavian steal syndrome: diagnosis with perfusion metrics from contrast-enhanced MR angiographic bolus-timing examination-initial experience. Radiology 235:927–933

    Article  PubMed  Google Scholar 

  15. Bitar R, Gladstone D, Sahlas D, Moody A (2004) MR angiography of subclavian steal syndrome: pitfalls and solutions. AJR Am J Roentgenol 183:1840–1841

    PubMed  Google Scholar 

  16. Bley TA, Wieben O, Vaith P, Schmidt D, Ghanem NA, Langer M (2004) Magnetic resonance imaging depicts mural inflammation of the temporal artery in giant cell arteritis. Arthritis Rheum 51:1062–1063; author reply 1064

    Article  PubMed  CAS  Google Scholar 

  17. Bley TA, Wieben O, Uhl M, Thiel J, Schmidt D, Langer M (2005) High-resolution MRI in giant cell arteritis: imaging of the wall of the superficial temporal artery. AJR Am J Roentgenol 184:283–287

    PubMed  Google Scholar 

  18. Olin JW, Young JR, Graor RA, Ruschhaupt WF, Bartholomew JR (1990) The changing clinical spectrum of thromboangiitis obliterans (Buerger’s disease). Circulation 82:IV3–8

    PubMed  CAS  Google Scholar 

  19. Olin JW (2000) Thromboangiitis obliterans (Buerger’s disease). N Engl J Med 343:864–869

    Article  PubMed  CAS  Google Scholar 

  20. Murphy GJ, White SA, Nicholson ML (2000) Vascular access for haemodialysis. Br J Surg 87:1300–1315

    Article  PubMed  CAS  Google Scholar 

  21. NKF-DOQI dinical practice guidelines for vascular access (1997) National Kidney Foundation-Dialysis Outcomes Quality Initiative. Am J Kidney Dis 30: S150–191

    Google Scholar 

  22. Staple TW (1973) Retrograde venography of subcutaneous arteriovenous fistulas created surgically for hemodialysis. Radiology 106:223–224

    PubMed  CAS  Google Scholar 

  23. Waldman GJ, Pattynama PM, Chang PC, Verburgh C, Reiber JH, de Roos A (1996) Magnetic resonance angiography of dialysis access shunts: initial results. Magn Reson Imaging 14:197–200

    Article  PubMed  CAS  Google Scholar 

  24. Bos C, Smits JH, Zijlstra JJ, et al (2001) MRA of hemodialysis access grafts and fistulae using selective contrast injection and flow interruption. Magn Reson Med 45:557–561

    Article  PubMed  CAS  Google Scholar 

  25. Planken RN, Tordoir JH, Dammers R, et al (2003) Stenosis detection in forearm hemodialysis arteriovenous fistulae by multiphase contrast-enhanced magnetic resonance angiography: preliminary experience. J Magn Reson Imaging 17:54–64

    Article  PubMed  Google Scholar 

  26. Leiner T, Herborn CU, Goyen M (2007) Nephrogenic systemic fibrosis is not exclusively associated with gadodiamide. Eur Radiol 17:1921–1923

    Article  PubMed  Google Scholar 

  27. Leiner T, Ho KY, Nelemans PJ, de Haan MW, van Engelshoven JM (2000) Three-dimensional contrast-enhanced moving-bed infusion-tracking (MoBI-track) peripheral MR angiography with flexible choice of imaging parameters for each field of view. J Magn Reson Imaging 11:368–377

    Article  PubMed  CAS  Google Scholar 

  28. Ho KY, Leiner T, de Haan MW, van Engelshoven JM (1999) Peripheral MR angiography. Eur Radiol 9:1765–1774

    Article  PubMed  CAS  Google Scholar 

  29. Ho KY, Leiner T, van Engelshoven JM (1999) MR angiography of run-off vessels. Eur Radiol 9:1285–1289

    Article  PubMed  CAS  Google Scholar 

  30. Nijenhuis RJ, Leiner T, Cornips EM, et al (2004) Spinal cord feeding arteries at MR angiography for thoracoscopic spinal surgery: feasibility study and implications for surgical approach. Radiology 233:541–547.

    Article  PubMed  Google Scholar 

  31. Schoenberg SO, Londy FJ, Licato P, Williams DM, Wakefield T, Chenevert TL (2001) Multiphase-multistep gadolinium-enhanced MR angiography of the abdominal aorta and run off vessels. Invest Radiol 36:283–291

    Article  PubMed  CAS  Google Scholar 

  32. Prince MR, Chabra SG, Watts R, et al. (2002) Contrast material travel times in patients undergoing peripheral MR angiography. Radiology 224:55–61

    Article  PubMed  Google Scholar 

  33. Herborn CU, Ajaj W, Goyen M, Massing S, Ruehm SG, Debatin JF (2004) Peripheral vasculature: whole-body MR angiography with midfemoral venous compression-initial experience. Radiology 230:872–878

    Article  PubMed  Google Scholar 

  34. Bilecen D, Schulte AC, Aschwanden M, et al (2004) MR angiography with venous compression. Radiology 233:617–618; author reply 618–619

    Article  PubMed  Google Scholar 

  35. Bilecen D, Schulte AC, Bongartz G, Heidecker HG, Aschwanden M, Jager KA (2004) Infragenual cuff-compression reduces venous contamination in contrast-enhanced MR angiography of the calf. J Magn Reson Imaging 20:347–351

    Article  PubMed  Google Scholar 

  36. Meaney JF, Ridgway JP, Chakraverty S et al. (1999) Stepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries: preliminary experience. Radiology 211:59–67

    PubMed  CAS  Google Scholar 

  37. Ruehm SG, Hany TF, Pfammatter T, Schneider E, Ladd M, Debatin JF (2000) Pelvic and lower extremity arterial imaging: diagnostic performance of three-dimensional contrast-enhanced MR angiography. AJR Am J Roentgenol 174:1127–1135

    PubMed  CAS  Google Scholar 

  38. Menzoian JO, LaMorte WW, Paniszyn CC, et al (1989) Symptomatology and anatomic patterns of peripheral vascular disease: differing impact of smoking and diabetes. Ann Vasc Surg 3:224–228

    Article  PubMed  CAS  Google Scholar 

  39. Maki JH, Wilson GJ, Eubank WB, Hoogeveen RM (2002) Utilizing SENSE to achieve lower station sub-millimeter isotropic resolution and minimal venous enhancement in peripheral MR angiography. J Magn Reson Imaging 15:484–491

    Article  PubMed  Google Scholar 

  40. Bezooijen R, van den Bosch HC, Tielbeek AV, et al (2004) Peripheral arterial disease: sensitivity-encoded multiposition MR angiography compared with intraarterial angiography and conventional multiposition MR angiography. Radiology 231:263–271

    Google Scholar 

  41. de Vries M, Nijenhuis RJ, Hoogeveen RM, de Haan MW, van Engelshoven JM, Leiner T (2005) Contrast-enhanced peripheral MR angiography using SENSE in multiple stations: feasibility study. J Magn Reson Imaging 21:37–45

    Article  PubMed  Google Scholar 

  42. Wang Y, Winchester PA, Khilnani NM, et al (2001) Contrast-enhanced peripheral MR angiography from the abdominal aorta to the pedal arteries: combined dynamic two-dimensional and bolus-chase three-dimensional acquisitions. Invest Radiol 36:170–177

    Article  PubMed  CAS  Google Scholar 

  43. Morasch MD, Collins J, Pereles FS, et al (2003) Lower extremity stepping-table magnetic resonance angiography with multilevel contrast timing and segmented contrast infusion. J Vasc Surg 37:62–71

    Article  PubMed  Google Scholar 

  44. Goyen M, Ruehm SG, Barkhausen J, et al (2001) Improved multistation peripheral MR angiography with a dedicated vascular coil. J Magn Reson Imaging 13:475–480

    Article  PubMed  CAS  Google Scholar 

  45. Fellner FA, Requardt M, Lang W, Fellner C, Bautz W, Cavallaro A (2003) Peripheral vessels: MR angiography with dedicated phased-array coil with large-field-of-view adapter feasibility study. Radiology 228:284–289

    Article  PubMed  Google Scholar 

  46. Leiner T, Nijenhuis RJ, Maki JH, Lemaire E, Hoogeveen R, van Engelshoven JM (2004) Use of a three-station phased array coil to improve peripheral contrast-enhanced magnetic resonance angiography. J Magn Reson Imaging 20:417–425

    Article  PubMed  Google Scholar 

  47. Dormandy JA, Rutherford RB Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Concensus (TASC). J Vasc Surg 2000 31:S1–S296

    Google Scholar 

  48. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASCII). J Vasc Surg 2007 45 Suppl S:S5–67

    Article  PubMed  Google Scholar 

  49. Suggested standards for reports dealing with lower extremity ischemia. Prepared by the Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery/North American Chapter, International Society for Cardiovascular Surgery. J Vasc Surg 1986 4:80–94

    Google Scholar 

  50. Dormandy JA, Ray S (1996) The natural history of peripheral arterial disease. In: Tooke JE, Lowe GD (eds) A textbook of vascular medicine. Arnold, London, pp. 162–175

    Google Scholar 

  51. Beard JD, Scott DJ, Evans JM, Skidmore R, Horrocks M (1988) Pulse-generated runoff: a new method of determining calf vessel patency. Br J Surg 75:361–363

    Article  PubMed  CAS  Google Scholar 

  52. Owen RS, Carpenter JP, Baum RA, Perloff LJ, Cope C (1992) Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N Engl J Med 326:1577–1581

    Article  PubMed  CAS  Google Scholar 

  53. Wilson YG, George JK, Wilkins DC, Ashley S (1997) Duplex assessment of run-off before femorocurural reconstruction. Br J Surg 84:1360–1363

    Article  PubMed  CAS  Google Scholar 

  54. Rudofsky G (2003) Peripheral arterial disease: chronic ischemic syndromes. In Lanzer P, Topol EJ (eds) Pan Vascular Medicine. Berlin, Springer, pp 1363–1422

    Google Scholar 

  55. Leiner T (2005) Magnetic resonance angiography of abdominal and lower extremity vasculature. Top Magn Reson Imaging 16:21–66

    Article  PubMed  Google Scholar 

  56. Rooke TW, Ioyce JW (2000) Uncommon arteriopathies. In: Rutherford RB (ed) Vascular surgery. W. B. Saunders, Philadelphia, pp 418–434.

    Google Scholar 

  57. Nelemans PJ, Leiner T, de Vet HC, van Engelshoven JM (2000) Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. Radiology 217:105–114

    PubMed  CAS  Google Scholar 

  58. Koelemay MJ, Lijmer JG, Stoker J, Legemate DA, Bossuyt PM (2001) Magnetic resonance angiography for the evaluation of lower extremity arterial disease: a meta-analysis. JAMA 285:1338–1345

    Article  PubMed  CAS  Google Scholar 

  59. Perreault P, Edelman MA, Baum RA, et al (2003) MR angiography with gadofosveset trisodium for peripheral vascular disease: phase II trial. Radiology 229:811–820

    Article  PubMed  Google Scholar 

  60. Goyen M, Edelman M, Perreault P, et al (2005) MR angiography of aortoiliac occlusive disease: a phase III study of the safety and effectiveness of the blood-pool contrast agent MS-325. Radiology 236:825–833

    Article  PubMed  Google Scholar 

  61. Rapp JH, Wolff SD, Quinn SF, et al (2005) Aortoiliac occlusive disease in patients with known or suspected peripheral vascular disease: safety and efficacy of gadofosveset-enhanced MR angiography-multicenter comparative phase III study. Radiology 236:71–78

    Article  PubMed  Google Scholar 

  62. Bosch E, Kreitner KF, Peirano MF, Thurner S, Shamsi K, Parsons EC, jr (2008) Safety and efficacy of gadofosveset-enhanced MR angiography for evaluation of pedal arterial disease: multicenter comparative phase 3 study. AJR Am J Roentgenol 190:179–186

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Leiner, T., Maki, J.H. (2008). MRA of the Peripheral Vasculature. In: Leiner, T., Goyen, M., Rohrer, M., Schönberg, S. (eds) Clinical Blood Pool MR Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77861-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77861-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77860-8

  • Online ISBN: 978-3-540-77861-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics