Skip to main content

Abdominal MRA

  • Chapter
  • 547 Accesses

Abstract

More than 10 years after the groundbreaking publication on Gd-enhanced abdominal magnetic resonance angiography (MRA) by Prince and colleagues, MRA has established itself as the problem-solving clinical vascular imaging modality [1, 2]. The previously used MRA techniques, time-of-flight (TOF) MRA and phase-contrast (PC) MRA [3], have major limitations for imaging of the abdominal vessels. Today, virtually every scanner in use meets the hardware requirements for 3D CE-MRA. A complete examination of the abdominal organs and vessels can be easily performed in 20 min and yields high-resolution, high-contrast images of the abdominal arteries [2]. Especially in patients with suspected renal artery disease, the widespread use of MRA is a success story which has been fostered by several factors [4]. In contrast to the main competitors Doppler-ultrasound (DUS) and computed tomography angiography (CTA), MRA has striking advantages. MRA is operator independent, and the resulting three-dimensional images can be post-processed to allow for better visualization of the structures of interest.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prince MR, Narasimham DL, Stanley JC, et al (1995) Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology 197:785–792

    PubMed  CAS  Google Scholar 

  2. Michaely HJ, Dietrich O, Nael K, Weckbach S, Reiser MF, Schoenberg SO (2006) MRA of abdominal vessels: technical advances. Eur Radiol 16:1637–1650

    Article  PubMed  Google Scholar 

  3. Debatin JF, Spritzer CE, Grist TM, et al (1991) Imaging of the renal arteries: value of MR angiography. AJR Am J Roentgenol 157:981–990

    PubMed  CAS  Google Scholar 

  4. Michaely HJ, Schoenberg SO, Rieger JR, Reiser MF (2005) MR angiography in patients with renal disease. Magn Reson Imaging Clin N Am 13:131–151

    Article  PubMed  Google Scholar 

  5. Michaely HJ, Kramer H, Nael K, et al (2007) Intraindividual comparison of high-spatial resolution abdominal MRA at 1.5T and 3.0T. Radiology 244:907–913

    Article  PubMed  Google Scholar 

  6. Schoenberg SO, Rieger J, Weber CH, et al (2005) High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology 235:687–698

    Article  PubMed  Google Scholar 

  7. Vasbinder GBC, Maki JH, Nijenhuis RJ, et al (2002) Motion of the distal renal artery during three-dimensional contrast-enhanced breath-hold MRA. J Magn Reson Imaging 16:685–696

    Article  PubMed  Google Scholar 

  8. Michaely HJ, Hermann KA, Kramer H, et al (2006) High-resolution renal MRA: comparison of image quality and vessel depiction with different parallel imaging acceleration factors. J Magn Reson Imaging 24: 95–100

    Article  PubMed  Google Scholar 

  9. Hartmann M, Wiethoff AJ, Hentrich HR, et al (2006) Initial imaging recommendations for Vasovist angiography. Eur Radiol 16 [Suppl 2]: B15–23

    PubMed  Google Scholar 

  10. Nikolaou K, Kramer H, Grosse C, et al (2006) High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology 241:861–872

    Article  PubMed  Google Scholar 

  11. Fenchel M, Nael K, Deshpande VS, et al (2006) Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions. Invest Radiol 41:697–703

    Article  PubMed  Google Scholar 

  12. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153: 189–194

    PubMed  CAS  Google Scholar 

  13. Klessen C, Hein PA, Huppertz A, et al (2007) First pass whole-body magnetic resonance angiography (MRA) using the blood-pool contrast medium gadofosveset trisodium: Comparison to gadopentetate dimeglumine. Invest Radiol 42:659–664

    Article  PubMed  Google Scholar 

  14. Gupta A, Tello R (2004) Accessory renal arteries are not related to hypertension risk: a review of MR angiography data. AJR Am J Roentgenol 182:1521–1524

    PubMed  Google Scholar 

  15. Bude RO, Forauer AR, Caoili EM, et al (2003) Is it necessary to study accessory arteries when screening the renal arteries for renovascular hypertension? Radiology 226:411–416

    Article  PubMed  Google Scholar 

  16. Safian RD, Textor SC (2001) Renal-artery stenosis. N Engl J Med 344:431–442

    Article  PubMed  CAS  Google Scholar 

  17. Klatte EC, Worrell JA, Forster JH, et al (1971) Diagnostic criteria of bilateral renovascular hypertension. Radiology 101:301–304

    PubMed  CAS  Google Scholar 

  18. Prince MR, Schoenberg SO, Ward JS, et al (1997) Hemodynamically significant atherosclerotic renal artery stenosis: MR angiographic features. Radiology 205:128–136

    PubMed  CAS  Google Scholar 

  19. Schoenberg SO, Rieger J, Weber C, et al (2004) High-resolution MRA of the renal arteries using parallel acquisition techniques: value of isotropic cross-sectional reformats compared to digital subtraction angiography and intravascular ultrasound. In: Proc of the International Society for Magnetic Resonance in Medicine. Kyoto: International Society for Magnetic Resonance in Medicine, p 235

    Google Scholar 

  20. Buller CE, Nogareda JG, Ramanathan K, et al (2004) The profile of cardiac patients with renal artery stenosis. J Am Coll Cardiol 43: 1606–1613

    Article  PubMed  Google Scholar 

  21. Olin JW, Melia M, Young JR, et al (1990) Prevalence of atherosderotic renal artery stenosis in patients with atherosclerosis elsewhere. Am J Med 88:46N–51N

    Article  PubMed  CAS  Google Scholar 

  22. Michaely HJ, Nael K, Schoenberg SO, et al. (2005) The feasibility of spatial high-resolution magnetic resonance angiography (MRA) of the renal arteries at 3.0T. Rofo 177:800–804

    PubMed  CAS  Google Scholar 

  23. Kim SH, Byun HS, Park JH, et al (1994) Renal parenchymal abnormalities associated with renal vein thrombosis: correlation between MR imaging and pathologic findings in rabbits. AJR Am J Roentgenol 162:1361–1365

    PubMed  CAS  Google Scholar 

  24. Tempany CM, Morton RA, Marshall FF (1992) MRI of the renal veins: assessment of nonneoplastic venous thrombosis. J Comput Assist Tomogr 16:929–934

    Article  PubMed  CAS  Google Scholar 

  25. Kanagasundaram NS, Bandyopadhyay D, Brownjohn AM, et al (1998) The diagnosis of renal vein thrombosis by magnetic resonance angiography. Nephrol Dial Transplant 13:200–202

    Article  PubMed  CAS  Google Scholar 

  26. Michaely HJ, Nael K, Schoenberg SO, et al (2006) Renal perfusion: comparison of saturation-recovery TurboFLASH measurements at 1.5T with saturation-recovery TurboFLASH and time-resolved echo-shared angiographic technique (TREAT) at 3.0T. J Magn Reson Imaging 2006;24:1413–1419

    Article  PubMed  Google Scholar 

  27. Nael K, Michaely HJ, Lee M, et al (2006) Dynamic pulmonary perfusion and flow quantification with MR imaging, 3.0T vs. 1.5T: initial results. J Magn Reson Imaging 24:333–339

    Article  PubMed  Google Scholar 

  28. Vasbinder GB, Nelemans PJ, Kessels AG, et al (2004) Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med 141:674–682

    PubMed  Google Scholar 

  29. Raman SS, Pojchamarnwiputh S, Muangsomboon K, et al (2007) Surgically relevant normal and variant renal parenchymal and vascular anatomy in preoperative 16-MDCT evaluation of potential laparoscopic renal donors. AJR Am J Roentgenol 188:105–114

    Article  PubMed  Google Scholar 

  30. Kock MC, Ijzermans JN, Visser K, et al (2005) Contrast-enhanced MR angiography and digital subtraction angiography in living renal donors: diagnostic agreement, impact on decision making, and costs. AJR Am J Roentgenol 185:448–456

    PubMed  Google Scholar 

  31. Cornelissen SA, Prokop M, Adriaensen ME (2007) Visualizing slow-flow endoleak after endovascular abdominal aortic aneurysm repair with the new blood pool agent Vasovist. In: Proc of the International Society for Magnetic Resonance in Medicine. Berlin: International Society for Magnetic Resonance in Medicine

    Google Scholar 

  32. Michaely HJ, Kramer H, Attenberger U, et al (2007) Renal magnetic resonance angiography at 3.0 T: technical feasibility and clinical perspectives. Top Magn Reson Imaging 18:117–125

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Michaely, H.J. (2008). Abdominal MRA. In: Leiner, T., Goyen, M., Rohrer, M., Schönberg, S. (eds) Clinical Blood Pool MR Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77861-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77861-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77860-8

  • Online ISBN: 978-3-540-77861-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics