Skip to main content

Technical Aspects of Contrast Enhanced MRA — First Pass and Steady State

  • Chapter
Clinical Blood Pool MR Imaging
  • 575 Accesses

Abstract

Since its introduction in the mid 1990s [1], contrast-enhanced magnetic resonance angiography (CE-MRA) has increased enormously in impact and today has replaced X-ray-based invasive catheter angiography for numerous diagnostic investigation [2]. From the beginning, MRA applications have been very demanding on the hardware requirements of MR imaging (MRI) scanners. Requiring state-of-the-art equipment, MRA has not just profited from the wide range of software and hardware developments of the recent past, but also has been a driving force behind numerous technical innovations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191:155–164

    PubMed  CAS  Google Scholar 

  2. Yucel EK, Anderson CM, Edelman RR, Grist TM, Baum RA, Manning WJ, Culebras A, Pearce W (1999) AHA scientific statement. Magnetic resonance angiography: update on applications for extracranial arteries. Circulation 100:2284–2301

    PubMed  CAS  Google Scholar 

  3. Lauffer RB (1991) Targeted relaxation enhancement agents for MRI. Magn Reson Med 22:339–342

    Article  PubMed  CAS  Google Scholar 

  4. Lauffer RB, Parmelee DJ, Dunham SU, Quellet HS, Dolan RP, Witte S, McMurry TJ, Walovitch RC (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538

    PubMed  CAS  Google Scholar 

  5. Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JW, Amedio JC Jr, Looby RJ, Supkowski RM, Horrocks WD Jr, McMurry TJ, Lauffer RB (2002) The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc 124:3152–3162

    Article  PubMed  CAS  Google Scholar 

  6. Hartmann M, Wiethoff AJ, Hentrich HR, Rohrer M (2006) Initial imaging recommendations for Vasovist angiography. Eur Radiol 16 [Suppl] 2:B15–23

    PubMed  Google Scholar 

  7. Laub G (1999) Principles of contrast-enhanced MR angiography. Basic and clinical applications. Magn Reson Imaging Clin N Am 7:783–795

    PubMed  CAS  Google Scholar 

  8. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 38:591–603

    Article  PubMed  CAS  Google Scholar 

  9. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  PubMed  CAS  Google Scholar 

  10. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  11. Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM (2004) SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging. 15:223–236

    Article  PubMed  Google Scholar 

  12. Weiger M, Pruessmann KP, Kassner A, Roditi G, Lawton T, Reid A, Boesiger P (2000): Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging 12:671–677

    Article  PubMed  CAS  Google Scholar 

  13. Sodickson DK, McKenzie CA, Li W, Wolff S, Manning WJ, Edelman RR (2000): Contrast-enhanced 3D MR angiography with simultaneous acquisition of spatial harmonics: A pilot study. Radiology 217:284–289

    PubMed  CAS  Google Scholar 

  14. Wilson GJ, Hoogeveen RM, Willinek WA, Muthupillai R, Maki JH (2004) Parallel imaging in MR angiography. Top Magn Reson Imaging 15:169–185

    Article  PubMed  Google Scholar 

  15. Glockner JF, Hu HH, Stanley DW, Angelos L, King K (2005) Parallel MR imaging: a user’s guide. Radiographics 25:1279–1297

    Article  PubMed  Google Scholar 

  16. Rohrer M, Geerts-Ossevoort L, Laub G (2007) Technical requirements, biophysical considerations and protocol optimization with magnetic resonance angiography using blood-pool agents. Eur Radiol 17 [Suppl 2]:B7–B12

    PubMed  Google Scholar 

  17. Prince M, Grist TM, Debatin JF (2003) 3-D contrast MR angiography, 3rd edn. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  18. Nikolaou K, Kramer H, Grosse C, Clevert D, Dietrich O, Hartmann M, Chamberlin P, Assmann S, Reiser MF, Schoenberg SO (2006) High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology 241:861–872

    Article  PubMed  Google Scholar 

  19. Wang MS, Haynor DR, Wilson GJ, Leiner T, Maki JH (2007) Maximizing contrast-to-noise ratio in ultra-high resolution peripheral MR angiography using a blood pool agent and parallel imaging. J Magn Reson Imaging 26:580–588

    Article  PubMed  CAS  Google Scholar 

  20. Huston J 3rd, Fain SB, Wiederer SJ, Wilman AH, Bernstein MA, Busse RF (1999) Carotid arteries: maximizing arterial to venous contrast in fluoroscopically triggered contrast-enhanced MR angiography with elliptic centric view ordering. Radiology 211:265–273

    PubMed  Google Scholar 

  21. Huston J 3rd, Fain SB, Wald JT, Luetmer PH, Rydberg CH, Covarrubias DJ, Riederer SJ, Bernstein MA, Brown RD, Meyer FB, Bower TC, Schleck CD (2001) Carotid artery: elliptic centric contrast-enhanced MR angiography compared with conventional angiography. Radiology 218:138–143

    PubMed  Google Scholar 

  22. Willinek WA, Gieseke J, Conrad R, Strunk H, Hoogeveen R, von Falkenhausen M, Keller E, Urbach H, Kuhl CK, Schild HH (2002) Randomly segmented central k-space ordering in high-spatialresolution contrast-enhanced MR angiography of the supraaortic arteries: initial experience. Radiology 225:583–588

    Article  PubMed  Google Scholar 

  23. Foo TK, Ho VB, Hood MN, Hess SL, Choyke PL (2001) High-spatialresolution multistation MR imaging of lower-extremity peripheral vasculature with segmented volume acquisition: feasibility study. Radiology 219:835–841

    PubMed  CAS  Google Scholar 

  24. van Bemmel CM, Spreeuwers LJ, Viergever MA, Niessen WJ (2003) Level-set-based artery-vein separation in blood pool agent CE-MR angiograms. IEEE Trans Med Imaging 22:1224–1234

    Article  PubMed  Google Scholar 

  25. Lei T, Udupa JK, Odhner D, Nyúl LG, Saha PK (2003) 3DVIEWNIXAVS: a software package for the separate visualization of arteries and veins in CE-MRA images. Comput Med Imaging Graph 27:351–362

    Article  PubMed  Google Scholar 

  26. Ho KY, Leiner T, de Haan MW, Kessels AG, Kitslaar PJ, van Engelshoven JM (1998) Peripheral vascular tree stenoses: evaluation with moving-bed infusion-tracking MR angiography. Radiology 206:683–692

    PubMed  CAS  Google Scholar 

  27. Wang Y, Lee HM, Khilnani NM, Jagust MB, Winchester PA, Bush HL, Sos TA, Sostman HD (1998) Bolus-chase MR digital subtraction angiography in the lower extremity. Radiology 207:263–269

    PubMed  CAS  Google Scholar 

  28. Meaney JF, Ridgway JP, Chakraverty S, Robertson I, Kessel D, Radjenovic A, Kouwenhoven M, Kassner A, Smith MA (1998) Stepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries: preliminary experience. Radiology 211:59–67

    Google Scholar 

  29. Ruehm SG, Hany TF, Pfammatter T, Schneider E, Ladd ME, Debatin JF (2000) Pelvic and lower extremity arterial imaging: diagnostic performance of three-dimensional contrast-enhanced MR angiography. AJR Am J Roentgenol 174:1127–1135

    PubMed  CAS  Google Scholar 

  30. Leiner T, Ho KY, Nelemans PJ, de Haan MW, van Engelshoven JM (2000) Three-dimensional contrast-enhanced moving-bed infusion-tracking (MoBI-track) peripheral MR angiography with flexible choice of imaging parameters for each field of view. J Magn Reson Imaging 11:368–377

    Article  PubMed  CAS  Google Scholar 

  31. Goyen M, Ruehm SG, Barkhausen J, Kroger K, Ladd ME, Truemmler KH, Bosk S, Requardt M, Reykowski A, Debatin JF (2001) Improved multi-station peripheral MR angiography with a delicated vascular coil. J Magn Reson Imaging 13:475–480

    Article  PubMed  CAS  Google Scholar 

  32. Ho KY, Leiner T, de Haan MW, van Engelshoven JM (1999) Peripheral MR angiography. Eur Radiol 9:1765–1774

    Article  PubMed  CAS  Google Scholar 

  33. Busch HP, Hoffmann HG, Rock J, Schneider C (2001) MR angiography of pelvic and leg vessels with automatic table movement technique (»MobiTrak«): Clinical experience with 450 studies. RoFo Fortschr Röntgenstr 173:405–409

    Article  CAS  Google Scholar 

  34. Huber A, Scheidler J, Wintersperger B, Baur A, Schmidt M, Requardt M, Holzknecht N, Helmberger T, Billing A, Reiser M (2003) Moving-table MR angiography of the peripheral runoff vessels: comparison of body coil and dedicated phased array coil systems. AJR Am J Roentgenol 180:1365–1373

    PubMed  CAS  Google Scholar 

  35. Leiner T, Nijenhuis RJ, Maki JH, Lemaire E, Hoogeveen R, van Engelshoven JM (2004) Use of a three-station phased array coil to improve peripheral contrast-enhanced magnetic resonance angiography. J Magn Reson Imaging 20:417–425

    Article  PubMed  Google Scholar 

  36. Ruehm SG, Goyen M, Barkhausen J, Kroger K, Bosk S, Ladd ME, Debatin JF (2001) Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 357:1086–1089

    Article  PubMed  CAS  Google Scholar 

  37. Ruehm SG, Goyen M, Quick HH, Schleputz M, Schleputz H, Bosk S, Barkhausen J, Ladd ME, Debatin JF (2000) [Whole-body MRA on a rolling table platform (AngioSURF)] Rofo Fortschr Röntgenstr 172:670–674

    Article  CAS  Google Scholar 

  38. Goyen M, Quick HH, Debatin JF, Ladd ME, Barkhausen J, Herborn CU, Bosk S, Kuehl H, Schleputz M, Ruehm SG (2002) Whole-body three-dimensional MR angiography with a rolling table platform: initial dinical experience. Radiology 22:270–277

    Article  Google Scholar 

  39. Herborn CU, Goyen M, Quick HH, Bosk S, Massing S, Kroeger K, Stoesser D, Ruehm SG, Debatin JF (2004). Whole-body 3D MR angiography of patients with peripheral arterial ocdusive disease. AJR Am J Roentgenol 182:1427–1434

    PubMed  Google Scholar 

  40. Quick HH, Vogt FM, Maderwald S, Herborn CU, Bosk S, Gohde S, Debatin JF, Ladd ME (2004) High spatial resolution whole-body MR angiography featuring parallel imaging: initial experience. RoFo Fortschr Röntgenstr 176:163–169

    Article  CAS  Google Scholar 

  41. Kramer H, Schoenberg SO, Nikolaou K, Huber A, Struwe A, Winnik E, Wintersperger BJ, Dietrich O, Kiefer B, Reiser MF (2005) Cardiovascular screening with parallel imaging techniques and a whole-body MR imager. Radiology 236:300–310

    Article  PubMed  Google Scholar 

  42. Dietrich O, Hajnal JV (1999) Extending the coverage of true volume scans by continuous movement of the subject. ISMRM, 7th Scientific Meeting and Exhibition, Philadelphia, p 1653

    Google Scholar 

  43. Kruger DG, Riederer SJ, Grimm RC, Rossman PJ (2002) Continuously moving table data acquisition method for long FOV contrast-enhanced MRA and whole-body MRI. Magn Reson Med 47:224–231

    Article  PubMed  Google Scholar 

  44. Zhu Y, Dumoulin CL (2003) Extended field-of-view imaging with table translation and frequency sweeping. Magn Reson Med 49:1106–1112

    Article  PubMed  Google Scholar 

  45. Fain SB, Browning FJ, Polzin JA, Du J, Zhou Y, Block WF, Grist TM, Mistretta CA (2004) Floating table isotropic projection (FLIPR) acquisition: a time-resolved 3D method for extended field-of-view MRI during continuous table motion. Magn Reson Med 52:1093–1102

    Article  PubMed  Google Scholar 

  46. Madhuranthakam AJ, Kruger DG, Riederer SJ, Glockner JF, Hu HH (2004) Time-resolved 3D contrast-enhanced MRA of an extended FOV using continuous table motion. Magn Reson Med 51:568–576

    Article  PubMed  Google Scholar 

  47. Zenge MO, Ladd ME, Vogt FM, Brauck K, Barkhausen J, Quick HH (2005) Whole-body magnetic resonance imaging featuring moving table continuous data acquisition with high-precision position feedback. Magn Reson Med 54:707–711

    Article  PubMed  Google Scholar 

  48. Polzin JA, Kruger DG, Gurr DH, Brittain JH, Riederer SJ (2004) Correction for gradient nonlinearity in continuously moving table MR imaging. Magn Reson Med 52:181–187

    Article  PubMed  Google Scholar 

  49. Zenge MO, Vogt FM, Brauck K, Jökel M, Barkhausen J, Kannengiesser S, Ladd ME, Quick HH (2006) High-resolution continuously acquired peripheral MR angiography featuring partial parallel imaging GRAPPA. Magn Reson Med 2006 56:859–865

    Article  Google Scholar 

  50. Vogt FM, Zenge MO, Ladd ME, Herborn CU, Brauck K, Luboldt W, Barkhausen J, Quick HH (2007) Peripheral vascular disease: comparison of continuous MR angiography and conventional MR angiography—pilot study. Radiology 243:229–238

    Article  PubMed  Google Scholar 

  51. Keupp J, Aldefeld B, Bornert P (2005) Continuously moving table SENSE imaging. Magn Reson Med 53:217–220

    Article  PubMed  Google Scholar 

  52. Kruger DG, Riederer SJ, Polzin JA, Madhuranthakam AJ, Hu HH, Glockner JF (2005) Dual-velocity continuously moving table acquisition for contrast-enhanced peripheral magnetic resonance angiography. Magn Reson Med 53:110–117

    Article  PubMed  Google Scholar 

  53. Kinner S, Zenge MO, Vogt FM, Ucan B, Ladd ME, Barkhausen J, Quick HH (2007) Ultra-high resolution peripheral MRA with k-space segmentation featuring a blood-pool contrast agent and venous suppression. Proc ISMRM 19–25 May, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Quick, H.H. (2008). Technical Aspects of Contrast Enhanced MRA — First Pass and Steady State. In: Leiner, T., Goyen, M., Rohrer, M., Schönberg, S. (eds) Clinical Blood Pool MR Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77861-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77861-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77860-8

  • Online ISBN: 978-3-540-77861-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics