Skip to main content

Rainfall Thresholds for Flood Warning Systems: A Bayesian Decision Approach

  • Chapter
Hydrological Modelling and the Water Cycle

Part of the book series: Water Science and Technology Library ((WSTL,volume 63))

Abstract

Operational real time flood forecasting systems generally require a hydrological model to run in real time as well as a series of hydro-informatics tools to transform the flood forecast into relatively simple and clear messages to the decision makers involved in flood defense. The scope of this chapter is to set forth the possibility of providing flood warnings at given river sections based on the direct comparison of the quantitative precipitation forecast with critical rainfall thresholdvalues, without the need of an on-line real time forecasting system. This approach leads to an extremely simplified alert system to be used by non technical stakeholders and could also be used to supplement the traditional flood forecasting systems in case of system failures. The critical rainfall threshold values, incorporating the soil moisture initial conditions, result from statistical analyses using long hydrological time series combined with a Bayesian utility function minimization. In the chapter, results of an application of the proposed methodology to the Sieve river, a tributary of the Arno river in Italy, are given to exemplify its practical applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annunziati, A., A. Focardi, P. Focardi, S. Martello, and P. Vannocci, 1999: Analysis of the rainfall thresholds that induced debris flows in the area of Apuan Alps – Tuscany, Italy, Plinius Conference ’99: Mediterranean Storms. Ed. Bios. pp. 485–493.

    Google Scholar 

  • Benjamin, J. R. and C. A. Cornell, 1970: Probability, Statistics, and Decision For Civil Engineers, McGraw-Hill, New York.

    Google Scholar 

  • Berger, J. O., 1986: Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, New York.

    Google Scholar 

  • Beven, K., 1987: Towards the use of catchment geomorphology in flood frequency predictions. Earth Surf Processes Landforms, 12, 6–82.

    Article  Google Scholar 

  • Bras, R. L., D. R. Gaboury, D. S. Grossman, and G. J. Vicen, 1985: Spatially varying rainfall and flood risk analysis. J. Hydraul. Eng., 111, 754–773.

    Article  Google Scholar 

  • Cameron, D. S., K. J. Beven, J. Tawn, S. Blazkova, and P. Naden, 1999: Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty). J. Hydrol., 219, 169–187.

    Article  Google Scholar 

  • Carpenter, T. M., J. A. Sperfslage, K. P. Georgakakos, T. Sweeney, and D. L. Fread, 1999: National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems. J. Hydrol., 224, 21–44.

    Article  Google Scholar 

  • Ciarapica, L. and Todini E., 2002: TOPKAPI: a model for the representation of the rainfall-runoff process at different scales. Hydrological Processes, 16(2), 207–229.

    Article  Google Scholar 

  • Cowpertwait, P. S. P., 1991: Further developments of the Neyman-Scott clustered point processes for modelling rainfall. Water Resour. Res., 27(7), 1431–1438.

    Article  Google Scholar 

  • Cowpertwait, P. S. P., P. E. O’Connell, A. V. Metcalfe, and J. A. Mawdsley, 1996: Stochastic point process modelling of rainfall. I. Single site fitting and validation. J. Hydrology, 175, 17–46.

    Article  Google Scholar 

  • Crosta, G. B. and P. Frattini, 2000: Rainfall thresholds for soil slip and debris flow triggering, Proceedings of the EGS 2nd Plinius Conference on Mediterranean Storms, Ed. Bios.

    Google Scholar 

  • Crosta, G. B. and P. Frattini, 2001: Coupling empirical and physically based rainfall thresholds for shallow landslides forecasting, Proceedings of the EGS 3rd Plinius Conference on Mediterranean Storms, Ed. Bios.

    Google Scholar 

  • Crosta, G. B. and P. Frattini, 2003: Distributed modelling of shallow landslides triggered by intense rainfall. Nat. Hazards Earth Sci., 3, 81–93.

    Google Scholar 

  • EFFS: Gouweleeuw B., P. Reggiani, and A. de Roo (eds.), 2004: A European Flood Forecasting System. Full Report (Contract no. EVG1-CT-1999-00011, http://effs.wldelft.nl.

  • De Vita, P. and P. Reichenbach, 1998: Rainfall triggered landslides: a reference list. Environ. Geol., 35(2/3), 219–233.

    Article  Google Scholar 

  • Gandin, L. S. and A. H. Murphy, 1992: Equitable skill scores for categorical forecasts. Mon. Weather Rev., 120, 361–370.

    Article  Google Scholar 

  • Georgakakos, K. P., 2006: Analytical results for operational flash flood guidance. J. Hydrology, in press. 317, 81–103.

    Article  Google Scholar 

  • Gray, D. D., P. G. Katz, S. M. deMonsabert, and N. P. Cogo, 1982: Antecedent moisture condition probabilities, J. Irrig. Drain. Engrg. Div., ASCE, 108(2), 107–114.

    Google Scholar 

  • Hawkins, R. H., A. T. Hjelmfelt, and A. W. Zevenberger, 1985: Runoff probability, storm depth, and curve numbers. J. Irrig. Drain. Engrg., ASCE, 111(4), 330–340.

    Article  Google Scholar 

  • Hennrich, K., 2000: Modelling CriticalWater Contents for Slope Stability and Associated Rainfall Thresholds using Computer Simulations. In: Bromhead, E., Dixon, N. and Ibsen, M.-L. (eds.) Landslides in Research, Theory and Practice – Proceedings of the 8th International Symposium on Landslides, Cardiff/UK, Thomas Telford Ltd.

    Google Scholar 

  • Iverson, R. M., 2000: Landslide triggering by rain infiltration. Water Resour. Res., 36(7), 1897– 1910.

    Article  Google Scholar 

  • Kelly, K. S. and R. Krzysztofowicz, 1997: A bivariate meta-Gaussian density for use in Hydrology. Stoch. Hydrol. Hydraul., 11, 17–31.

    Article  Google Scholar 

  • Liu, Z. and E. Todini, 2002: Towards a comprehensive physically-based rainfall-runoff model. Hydrol. Earth Syst. Sci., 6, 859–881.

    Article  Google Scholar 

  • Mancini, M., P. Mazzetti, S. Nativi, D. Rabuffetti, G. Ravazzani, P. Amadio, and R. Rosso, 2002: Definizione di soglie pluviometriche di piena per la realizzazione di un sistema di allertamento in tempo reale per il bacino dell’Arno a monte di Firenze, Proc. XXVII Convegno di idraulica e Costruzione Idrauliche, Vol. II:497–505 (In Italian).

    Google Scholar 

  • Mason, S. J., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291–303.

    Google Scholar 

  • Mason, S. J. and N. E. Graham, 1999: Conditional probabilities, relative operating characteristics and relative operating levels. Weather Forecast., 14, 713–725.

    Article  Google Scholar 

  • Moore, R. J. and R. T. Clarke, 1981: A distribution function approach to rainfall runoff modelling. Water Resour. Res., 17(5), 1367–1382.

    Article  Google Scholar 

  • Neary, D .G. and L. W. Swift, 1987: Rainfall thresholds for triggering a debris flow avalanching event in the southern Appalachian Mountains. Rew. Eng. Geology, VII, 81–95.

    Google Scholar 

  • Nelsen, R. B., 1999: An Introduction to Copulas, Springer-Verlag, New York.

    Google Scholar 

  • Reed, S., D. Johnson, and T. Sweeney, 2002: Application and national geographic information system database to support two-year flood and threshold runoff estimates. J. Hydrol. Eng., 7(3), 209–219, May 1.

    Article  Google Scholar 

  • Rodriguez-Iturbe, I., D. R. Cox, and Isham V., 1987a : Some models for rainfall based on stochastic point processes. Proc. R. Soc. London, Ser. A, 410, 269–288.

    Article  Google Scholar 

  • Rodriguez-Iturbe, I., B. Febres De Power, and J. B. Valdes, 1987b: Rectangular Pulses point processes models for rainfall: analysis of empirical data. J. Geophys. Res., 92(D8), 9645–9656.

    Article  Google Scholar 

  • SCS – Soil Conservation Service, 1986: National Engineering Handbook, Section 4, Hydrology, Rev. Ed., USDA, Washington DC, USA.

    Google Scholar 

  • Sweeney, T. L., 1992: Modernized areal flash flood guidance. NOAA Technical Report NWS HYDRO 44, Hydrologic Research Laboratory, National Weather Service, NOAA, Silver Spring, MD, October, 21pp. and an appendix.

    Google Scholar 

  • Todini, E., 1996: The ARNO rainfall-runoff model. J. Hydro., 175, 339–382.

    Article  Google Scholar 

  • Todini, E. and L. Ciarapica, 2002: The TOPKAPI model. In: Singh, V. P., D. K. Frevert, and S. P. Meyer, (eds.) Mathematical Models of Large Watershed Hydrology. Water Resources Publications, Littleton, Colorado, Chapter 12, 471–506.

    Google Scholar 

  • Van derWaerden, B. L., 1952: Order tests for two-sample problem and their power. Indagat.Math., 14, 253–458.

    Google Scholar 

  • Wang, C. T., V. K. Gupta and E. Waymire, 1981: A geomorphologic synthesis of nonlinearity in surface runoff. Water Resour. Res. 17(3), 545–554.

    Article  Google Scholar 

  • Zhao, R. J., 1977: Flood Forecasting Method for Humid Regions of China, East China College of Hydraulic Engineering, Nanjing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Martina, M., Todini, E., Libralon, A. (2009). Rainfall Thresholds for Flood Warning Systems: A Bayesian Decision Approach. In: Sorooshian, S., Hsu, KL., Coppola, E., Tomassetti, B., Verdecchia, M., Visconti, G. (eds) Hydrological Modelling and the Water Cycle. Water Science and Technology Library, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77843-1_9

Download citation

Publish with us

Policies and ethics