Skip to main content

Cetemps Hydrological Model (CHyM), a Distributed Grid-Based Model Assimilating Different Rainfall Data Sources

  • Chapter
Hydrological Modelling and the Water Cycle

Part of the book series: Water Science and Technology Library ((WSTL,volume 63))

Abstract

Within the activities of Cetemps Center of Excellence of University of L’Aquila, a distributed grid based hydrological model has been developed with the aim to provide a general purpose tool for flood alert mapping. One of the main characteristic of this model is the ability to assimilate different data sources for rebuilding two dimensional rainfall distribution. The model can be used for any geographical domain with any resolution up to the resolution of the implemented Digital Elevation Model, namely about 300 meters in the current implementation. A Cellular Automata based algorithm has been implemented to extract a coherent drainage network scheme for any geographical domain. The algorithm for flow scheme extraction and for the assimilation of different rainfall data sources are described in details too. Several applications of such algorithms are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Band, L. E., 1986: Analysis and representation of drainage basin structure with digital elevation data. In: Proceedings of the Second International Conference on Spatial Data Handling, 437–450. Int. Geogr. Union, Williamsville, New York, USA.

    Google Scholar 

  • Coppola, E., D. I. F. Grimes, M. Verdecchia, and G. Visconti, 2006: Validation of improved TAMANN neural network for operational satellite-derived rainfall estimation in Africa. J. Appl. Meteor., 45(11), 1557–1572.

    Article  Google Scholar 

  • Cressman, G., 1959: An operational objective analysis system. Mon. Wea. Rev, 87, 367–374.

    Article  Google Scholar 

  • Dudhia, J., 1993: A non hydrostatic version of the Penn State/NCAR mesoscale model: validation test and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493–1513.

    Article  Google Scholar 

  • Fairfield, J. and P. Leymarie, 1991: Drainage networks from digital elevation models. Water Resour. Res., 27(5), 709–717.

    Article  Google Scholar 

  • French, M. N. and W. F. Krajewski, 1994: A model for real time rainfall forecasting using remote sensing, 1 Formulation. Water Resour. Res., 30(4), 1085–1094.

    Article  Google Scholar 

  • Garbrecht, J. and L.W. Martz, 1997: The assigment of drainage direction over flat surfaces in raster digital elevation model. J. Hydrol., 193, 204–213.

    Article  Google Scholar 

  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second generation regional climate model (RegCM2) I: Boundary layer and radiative transfer processes. Mon. Wea. Rev., 121, 2794–2813.

    Article  Google Scholar 

  • Giorgi, F., M. R. Marinucci, G. T. Bates, and G. De Canio, 1993b: Development of a second generation regional climate model (RegCM2) II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814–2832.

    Article  Google Scholar 

  • Goodrich, D. C., L. J. Lane, R. M. Shillito, S. N. Miller, K. H. Syed, and D. A. Woolhiser, 1997: Linearity of basin response as a function of scale in a semiarid watershed. Water Resour. Res., 33, 2951–2965.

    Article  Google Scholar 

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A Description of the fifth generation Penn State/NCAR Mesoscale Model (MM5), NCAR Technical Note, NCAR/TN-398+STR, 121.

    Google Scholar 

  • Grimes, D. I. F., E. Coppola, M., and Verdecchia, G., 2003: Visconti a Neural Network Approach to real-time Rainfall estimation for Africa using Satellite data. J. Hydrol., 4(6), 1119–1133.

    Google Scholar 

  • Jenson, S. K. and J. O. Domingue, 1988: Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Rem. Sens., 54(11), 1593–1600.

    Google Scholar 

  • Krajewski, W. F. and J. A. Smith, 2002: Radar hydrology: rainfall estimation. Adv. Water Resour., 25, 1387–1394.

    Article  Google Scholar 

  • Lighthill M. J. and C. B. Whitham, 1995: On kinematic waves, 1, flood movement in long rivers. Proceedings of the Royal Society, London, Series A 229, 281–316.

    Article  Google Scholar 

  • Marks, D., J. Dozier, and J. Frew, 1984: Automated basin delineation from digital elevation data. GeoProcessing 2, 229–311.

    Google Scholar 

  • Martz, L. W. and E. De Jong, 1988: Catch: a Fortran program for measuring catchment area from digital elevation models. Comput. Geosci., 14(5), 627–640.

    Article  Google Scholar 

  • Martz, L.W. and J. Garbrecht, 1995: Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method comment. J. Hydrol., 167, 393–396.

    Article  Google Scholar 

  • Martz, L. W. and J. Garbrecht, 1993: Automated extraction of drainage network and watershed data from digital elevation models. Water Resour. Bull., 29(6), 901–908.

    Google Scholar 

  • Martz, L. W. and J. Garbrecht, 1992: Numerical definition of drainage network and subcatchment areas from digital elevation models. Comput. Geosci., 18(6), 747–761.

    Article  Google Scholar 

  • Michaud, J. D. and S. Sorooshian, 1994: Effect of rainfall-sampling errors on simulations of desert flash floods. Water Resour. Res., 30(10), 2765–2775.

    Article  Google Scholar 

  • O’Donnel G., B. Nijssen, and D. P. Lettenmaier, 1999: A simple algorithm for generating streamflow networks from grid-based, macroscale hydrological models. Hidrol. Process., 13, 1269– 1275.

    Article  Google Scholar 

  • Overtone, D. E., 1964: Mathematical refinement of an infiltration equation for watershed engineering. ARS41-99, Dept. Agriculture, Agriculture Research Service, USDA.

    Google Scholar 

  • Packard N. H. and S. Wolfram, 1985: Two-dimensional cellular automata. J. Stat. Phys., 38, 901–946.

    Google Scholar 

  • Pal, J. S., F. Giorgi, and X. Bi, 2007: Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88(9), 1395–1409.

    Article  Google Scholar 

  • Ryan, C. and M. Boyd, 2003: CatchmentSIM: a new GIS tool for topographic geo-computation and hydrologic modeling. 28th International Hydrology and Water Resource Symposium, 10–14 November 2003, Wollongong, NSW.

    Google Scholar 

  • Singh, V. P. and F. X. Yu, 1990: Derivation of infiltration equation using systems. Approach J. Irrigat. Drain. Eng., 116(6), 837–858, December.

    Article  Google Scholar 

  • Singh, V. P., 1997: Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph. Hydrol. Process., 11(12), 1649–1669.

    Article  Google Scholar 

  • Singh, V. P. and D. K. Frevert, 2002: Mathematical Models of Small Watershed Hydrology and Application, Water Resource Publications, LLC, Highlands Ranch, Colorado, USA.

    Google Scholar 

  • Singh, V. P. and D. K. Frevert, 2002: Mathematical Models of Large Watershed Hydrology, Water Resource Publications, LLC, Highlands Ranch, Colorado, USA.

    Google Scholar 

  • Todini E., 1996: The Arno rainfall-runoff model. J. Hydrol., 175, 339–382.

    Article  Google Scholar 

  • Todini, E., 2001: A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements. Hydrol. Earth Syst. Sci., 5(2), 187–199.

    Article  Google Scholar 

  • Tomassetti, B., F. Giorgi, M. Verdecchia, and G. Visconti, 2003: Regional model simulation of hydrometeorological effects of the Fucino Lake on the surrounding region. Ann. Geophys., 21, 2219–2232.

    Article  Google Scholar 

  • Tomassetti, B., E. Coppola, M. Verdecchia, and G. Visconti, 2005: Coupling a distributed grid based hydrological model and MM5 meteorological model for flooding alert mapping. Adv. in Geosci., 2, 59–63.

    Article  Google Scholar 

  • Thornthwaite, C. W., and J. R. Mather, 1957: Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance. Publications in Climatology, Vol. 10, Laboratory of Climatology, Drexel Institute of Technology, 311 pp.

    Google Scholar 

  • Tribe, A., 1992: Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method. J. Hydrol., 139, 263–293.

    Article  Google Scholar 

  • Turcotte, R., J. P., Fortin, A. N. Rousseau, S. Massicotte, and J. P. Villeneuve, 2001: Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network. J. Hydrol., 240, 225–242.

    Article  Google Scholar 

  • Van der Linden, S. and J. H. Christensen, 2003: Improved hydrological modelling for remote regions using a combination of observed and simulated precipitation data. J. Geophys. Res., 108(D2), 4072.

    Article  Google Scholar 

  • Wolfram, S., 1988: Theory and application of Cellular Automata, World Scientific, Singapore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Verdecchia, M., Coppola, E., Tomassetti, B., Visconti, G. (2009). Cetemps Hydrological Model (CHyM), a Distributed Grid-Based Model Assimilating Different Rainfall Data Sources. In: Sorooshian, S., Hsu, KL., Coppola, E., Tomassetti, B., Verdecchia, M., Visconti, G. (eds) Hydrological Modelling and the Water Cycle. Water Science and Technology Library, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77843-1_8

Download citation

Publish with us

Policies and ethics