Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 98))

Summary

Effusion cooling by discrete slits and holes in various laminar zero-pressure-gradient super- and hypersonic boundary layers is investigated using direct numerical simulation. A comparison with experimental data for a Mach 2.67 boundary layer with a cool wall and a spanwise slit shows good agreement. For an adiabatic Mach 6 boundary layer it was found that slits are better than holes due to the lower blowing velocity. Slit blowing causes a destabilisation of 2nd mode disturbances, and a complete stabilisation of 1st modes despite the generated maxima of the spanwise vorticity inside the boundary layer. Hole blowing gives rise to counter-rotating streamwise vortices, with a noticeable laminar-flow destabilisation only for large spanwise hole spacings. For a radiation-adiabatic wall at flight conditions the principal behavior is similar but part of the cooling efficiency is lost because of the decreased radiation of heat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babucke, A., et al.: Direct numerical simulation of shear flow phenomena on parallel vector computers. In: Resch, M., et al. (eds.) High Preformance Computing on Vector Systems, Proc. High Performance Computing Center Stuttgart, pp. 229–247. Springer, Heidelberg (2003)

    Google Scholar 

  2. Bierbach, M.: Untersuchungen zur aktiven Kühlung der Grenzschicht-strömung an einem Plattenmodell. Diplomarbeit, Technische Universität Darmstadt (2003)

    Google Scholar 

  3. Eißler, W.: Numerische Untersuchungen zum laminar-turbulenten Strömungsumschlag in Überschallgrenzschichten. Dissertation, Universität Stuttgart (1998)

    Google Scholar 

  4. Hirschel, E.H.: Basics of Aerothermodynamics. Springer, Heidelberg (2004)

    Google Scholar 

  5. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kloker, M.: A robust high-resolution split-type compact FD-scheme for spatial direct numerical simulation of boundary-layer transition. Applied Scientific Research 59, 353–377 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Linn, J., Kloker, M.J.: Numerical investigations of effusion cooling in hypersonic boundary-layer flow. In: Tropea, C., et al. (eds.) Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 96, Springer, Heidelberg (2007)

    Google Scholar 

  8. Malik, M.R.: Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA-J 27, 1487–1493 (1989)

    Article  Google Scholar 

  9. Stemmer, C., Kloker, M.: Interference of wave trains with varying phase relations in a decelerated two-dimensional boundary layer. In: Wagner, S., Kloker, M., Rist, U. (eds.) Recent Results in Laminar-Turbulent Transition. NNFM, vol. 86, pp. 91–110. Springer, Heidelberg (2003)

    Google Scholar 

  10. Thumm, A.: Numerische Untersuchung zum laminar-turbulenten Strömungsumschlag in transsonischen Grenzschichtströmungen. Disseration, Universität Stuttgart (1991)

    Google Scholar 

  11. White, F.M.: Viscous Fluid Flow, 2nd edn. Series in Mechanical Engineering. McGraw-Hill, New York (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ali Gülhan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Linn, J., Kloker, M.J. (2008). Numerical Investigations of Film Cooling. In: Gülhan, A. (eds) RESPACE – Key Technologies for Reusable Space Systems. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77819-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77819-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77818-9

  • Online ISBN: 978-3-540-77819-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics