Advertisement

Fundamental tests with trapped antiprotons

  • E WidmannEmail author
Chapter
  • 954 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 749)

Keywords

Storage Ring Paul Trap Antiprotonic Helium Antihydrogen Atom Antiproton Decelerator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O. Chamberlain, E. Segrè, C. Wiegand, et al., Phys. Rev. 100, 947 (1955)CrossRefADSGoogle Scholar
  2. 2.
    O. Chamberlain, W. W. Chupp, G. Goldhaber, et al., Phys. Rev. 101, 909 (1956)CrossRefADSGoogle Scholar
  3. 3.
    O. Chamberlain, W. Chupp, A. Ekspong, et al., Phys. Rev. 102, 921 (1956)CrossRefADSGoogle Scholar
  4. 4.
    Experment E835 at Fermilab. http,//www.e835.to.infn.it/Google Scholar
  5. 5.
    H. Koziol, S. Maury, Parameter list for the antiproton accumulator complex (aac). Tech. rep., CERN, Geneva, Switzerland (1995). CERN/PS 95-15 (AR/BD)Google Scholar
  6. 6.
    G. Baur, G. Boero, S. Brauksiepe, et al., Phys. Lett. B 368, 251 (1996)CrossRefADSGoogle Scholar
  7. 7.
    S. Baird, et al., Design study of the antiproton decelerator. Tech. Rep. CERN-PS-96-043-AR, CERN, Geneva, Switzerland (1996)Google Scholar
  8. 8.
    C. Maggiore, et al., Relative biological effectiveness and peripheral damage of antiproton annihilation. proposal CERN-SPSC-2002-030; SPSC-P-324, CERN, Geneva, Switzerland (2002)Google Scholar
  9. 9.
    C. Maggiore, et al., Nucl. Instr. Meth. B 214, 181 (2004)CrossRefADSGoogle Scholar
  10. 10.
    An international accelerator facility for beams of ions and antiprotons. Conceptual Design Report, GSI (Nov. 2001)Google Scholar
  11. 11.
    PANDA collaboration, Strong interaction studies with antiprotons. Letter of intent (2004). Available from http,//www.gsi.de/pandaGoogle Scholar
  12. 12.
    FLAIR a facility for low-energy antiproton and ion research. Letter of intent (Feb. 2004). Available from http,//www.oeaw.ac.at/smi/flair/Google Scholar
  13. 13.
    T. Baier, et al., HITRAP Technical Design Report, GSI (2003). Http,//www.gsi.de/documents/DOC-2003-Dec-69-2.pdfGoogle Scholar
  14. 14.
    G. Lüders, Ann. Phys. (NY) 2, 1 (1957)zbMATHCrossRefADSGoogle Scholar
  15. 15.
    T. Lee, Y. Yang, Phys. Rev. 104, 254 (1956)CrossRefADSGoogle Scholar
  16. 16.
    C. S. Wu, E. Ambler, R. W. Hayward, et al., Phys. Rev. 105, 1413 (1957)CrossRefADSGoogle Scholar
  17. 17.
    J. H. Christenson, J. W. Cronin, V. L. Fitch, et al., Phys. Rev. Lett. 13, 138 (1964)CrossRefADSGoogle Scholar
  18. 18.
    B. Aubert, et al., Phys. Rev. Lett. 87, 091801 (2001)CrossRefADSGoogle Scholar
  19. 19.
    K. Abe, et al., Phys. Rev. Lett. 87, 091802 (2001)CrossRefADSGoogle Scholar
  20. 20.
    L. Iconomidou-Fayard, J. T. Thanh Van, eds., XIV Rencontres de Blois, Matter-antimatter asymmetry. The Gioi Publishers Vietnam (2002)Google Scholar
  21. 21.
    A. D. Dolgov, In L. Iconomidou-Fayard, J. T. Thanh Van, eds., XIV Rencontres de Blois, Matter-antimatter asymmetry, 15–25. The Gioi Publishers Vietnam (2002)Google Scholar
  22. 22.
    A. D. Sakharov, JETP Letters 5, 24 (1967)ADSGoogle Scholar
  23. 23.
    F. W. Stecker, In L. Iconomidou-Fayard, J. T. Thanh Van, eds., XIV Rencontres de Blois, Matter-antimatter asymmetry, 514. The Gioi Publishers Vietnam(2002)Google Scholar
  24. 24.
    O. Bertolami, D. Colladay, V. A. Kostelecky, et al., Phys. Lett. B 395, 178 (1997)CrossRefADSGoogle Scholar
  25. 25.
    D. Colladay, V. A. Kostelecký, Phys. Rev. D 55, 6760 (1997)CrossRefADSGoogle Scholar
  26. 26.
    R. Bluhm, V. A. Kostelecký, N. Russell, Phys. Rev. Lett. 79, 1432 (1997)CrossRefADSGoogle Scholar
  27. 27.
    R. Bluhm, V. A. Kostelecký, N. Russell, Phys. Rev. D 57, 3932 (1998)CrossRefADSGoogle Scholar
  28. 28.
    V. A. Kostelecký, Phys. Rev. Lett. 80, 1818 (1998)CrossRefADSGoogle Scholar
  29. 29.
    R. Bluhm, V. A. Kostelecký, N. Russell, Phys. Rev. Lett. 82, 2254 (1999)CrossRefADSGoogle Scholar
  30. 30.
    G. Gabrielse, A. Khabbaz, D. S. Hall, et al., Phys. Rev. Lett. 82, 3198 (1999)CrossRefADSGoogle Scholar
  31. 31.
    H. Dehmelt, R. Mittleman, R. S. Van Dyck, Jr., et al., Phys. Rev. Lett. 83, 4694 (1999)CrossRefADSGoogle Scholar
  32. 32.
    R. K. Mittleman, I. I. Ioannou, H. G. Dehmelt, et al., Phys. Rev. Lett. 83, 2116 (1999)CrossRefADSGoogle Scholar
  33. 33.
    D. Bear, R. E. Stoner, R. L. Walsworth, et al., Phys. Rev. Lett. 85, 5038 (2000)CrossRefADSGoogle Scholar
  34. 34.
    D. F. Phillips, M. A. Humphrey, E. M. Mattison, et al., Phys. Rev. D 63, 111101 (2001)CrossRefADSGoogle Scholar
  35. 35.
    V. W. Hughes, M. G. Perdekamp, D. Kawall, et al., Phys. Rev. Lett. 87, 111804 (2001)CrossRefADSGoogle Scholar
  36. 36.
    J. M. Link, et al., Phys. Lett. B 556, 7 (2003)CrossRefADSGoogle Scholar
  37. 37.
    W.-M. Yao, C. Amsler, D. Asner, et al., J. Phys G 33, 1+ (2006)CrossRefADSGoogle Scholar
  38. 38.
    G. Gabrielse, X. Fei, K. Helmerson, et al., Phys. Rev. Lett. 57, 2504 (1986)CrossRefADSGoogle Scholar
  39. 39.
    M. Iwasaki, S. N. Nakamura, K. Shigaki, et al., Phys. Rev. Lett. 67, 1246 (1991)CrossRefADSGoogle Scholar
  40. 40.
    G. Blanford, D. Christian, K. Gollwitzer, et al., Phys. Rev. Lett. 80, 3037 (1998)CrossRefADSGoogle Scholar
  41. 41.
    J. K. Thompson, S. Rainvilleand, D. E. Pritchard, Nature 430, 58 (2004)CrossRefADSGoogle Scholar
  42. 42.
    T. Yamazaki, N. Morita, R. S. Hayano, et al., Phys. Rep. 366, 183 (2002)CrossRefADSGoogle Scholar
  43. 43.
    T. Yamazaki, E. Widmann, R. S. Hayano, et al., Nature 361, 238 (1993)CrossRefADSGoogle Scholar
  44. 44.
    N. Morita, M. Kumakura, T. Yamazaki, et al., Phys. Rev. Lett. 72, 1180 (1994)CrossRefADSGoogle Scholar
  45. 45.
    H. A. Torii, R. S. Hayano, M. Hori, et al., Phys. Rev. A 59, 223 (1999)CrossRefADSGoogle Scholar
  46. 46.
    V. I. Korobov, D. D. Bakalov, Phys. Rev. Lett. 79, 3379 (1997)CrossRefADSGoogle Scholar
  47. 47.
    V. I. Korobov, In E. Zavattini, D. Bakalov, C. Rizzo, eds., Frontier Tests of Quantum Electrodynamics and Physics of the Vacuum, 215–221. Heron Press, Sofia (1998)Google Scholar
  48. 48.
    Y. Kino, M. Kamimura, H. Kudo, Nucl. Phys. A 631, 649c (1998)CrossRefADSGoogle Scholar
  49. 49.
    Y. Kino, M. Kamimura, H. Kudo, Innovative Computational Methods in Nuclear Many-Body Problems, Towards a New Generation of Physics in Finite Quantum Systems (1998)Google Scholar
  50. 50.
    N. Elander and E. Yarevsky, Phys. Rev. A 56, 1855 (1997). Errata 57, 2256 (1998).Google Scholar
  51. 51.
    M. Hori, J. Eades, R. S. Hayano, et al., Phys. Rev. Lett. 91, 123401 (2003)CrossRefADSGoogle Scholar
  52. 52.
    V. I. Korobov, Phys. Rev. Lett. 67, 62501 (2003). Erratum Phys. Rev. A 68, 019902ADSMathSciNetGoogle Scholar
  53. 53.
    Y. Kino, M. Kamimura, H. Kudo, Nucl. Instrum. Methods Phys. Res. B 412, 84 (2004)CrossRefADSGoogle Scholar
  54. 54.
    A. M. Lombardi, W. Pirkl, Y. Bylinsky, In P. Lucasa, S. Webber, eds., Proceedings of the 2001 Particle Physics Accelerator confenrece, 585–587. IEEE, Piscataway, NJ (2001)Google Scholar
  55. 55.
    M. Hori, A. Dax, J. Eades, et al., Phys. Rev. Lett. 96, 243401 (2006)CrossRefADSGoogle Scholar
  56. 56.
    R. Hughes, B. I. Deutch, Phys. Rev. Lett. 69, 578 (1992)CrossRefADSGoogle Scholar
  57. 57.
    E. Widmann, J. Eades, T. Yamazaki, et al., Phys. Lett. B 404, 15 (1997)CrossRefADSGoogle Scholar
  58. 58.
    D. Bakalov, V. I. Korobov, Phys. Rev. A 57, 1662 (1998)CrossRefADSGoogle Scholar
  59. 59.
    E. Widmann, J. Eades, T. Ishikawa, et al., Phys. Rev. Lett. 89, 243402 (2002)CrossRefADSGoogle Scholar
  60. 60.
    V. I. Korobov, D. Bakalov, J. Phys. B 34, L519 (2001)CrossRefADSGoogle Scholar
  61. 61.
    N. Yamanaka, Y. Kino, H. Kudo, et al., Phys. Rev. A 63, 012518 (2001)CrossRefADSGoogle Scholar
  62. 62.
    Y. Kino, N. Yamanaka, M. Kamimura, et al., Hyperfine Interactions 146–147, 331 (2003)CrossRefGoogle Scholar
  63. 63.
    A. Kreissl, A. D. Hancock, H. Koch, et al., Z. Phys. C 37, 557 (1988)CrossRefADSGoogle Scholar
  64. 64.
    D. Bakalov, E. Widmann, Determining the antiproton magnetic moment from measurements of the hyperfine structure of antiprotonic helium (2007). Http,//arxiv.org/abs/physics/0612021Google Scholar
  65. 65.
    M. Charlton, J. Eades, D. Horváth, et al., Phys. Rep. 241, 65 (2004)CrossRefADSGoogle Scholar
  66. 66.
    M. Fischer, N. Kolachevsky, M. Zimmermann, et al., Phys. Rev. Lett. 92, 230802 (2004)CrossRefADSGoogle Scholar
  67. 67.
    J. R. Sapirstein, D. R. Yennie, In T. Kinoshita, ed., Quantum Electrodynamics, 560–672. World Scientific, Singapore (1990)Google Scholar
  68. 68.
    K. Pachucki, (2003). Private communicationGoogle Scholar
  69. 69.
    S. R. Lundeen, F. M. Pipkin, Phys. Rev. Lett. 46, 232 (1981)CrossRefADSGoogle Scholar
  70. 70.
    K. Pachucki, D. Leibfried, M. Weitz, et al., J. Phys. B, At. Mol. Opt. Phys. 29, 177 (1997)CrossRefADSGoogle Scholar
  71. 71.
    S. G. Karshenboim, In S. G. Karshenboim, V. B. Smirnov, eds., Precision Physics of Simple Atomic Systems, 142–162. Springer, Berlin, Heidelberg (2003). Hep-ph/0305205Google Scholar
  72. 72.
    S. G. Karshenboim, Phys. Lett A 225, 97 (1997)CrossRefADSGoogle Scholar
  73. 73.
    M. S. Fee, et al., Phys. Rev. A 48, 192 (1993)CrossRefADSGoogle Scholar
  74. 74.
    K. Hagiwara, et al., Phys. Rev. D 66, 010001 (2002)CrossRefADSGoogle Scholar
  75. 75.
    R. S. Van Dyck, P. B. Swinberg, G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987)CrossRefADSGoogle Scholar
  76. 76.
    M. Niering, R. Holzwarth, J. Reichert et al., Phys. Rev. Lett. 84, 5496 (2000).CrossRefADSGoogle Scholar
  77. 77.
    G. G. Simon, C. Schmitt, F. Borokowski, et al., Nucl. Phys. A 333, 381 (1980)CrossRefADSGoogle Scholar
  78. 78.
    I. Sick, Phys. Lett. B 476, 62 (2003)ADSGoogle Scholar
  79. 79.
    T. Udem, A. Huber, B. Gross, et al., Phys. Rev. Lett. 79, 2646 (1997)CrossRefADSGoogle Scholar
  80. 80.
    N. Ramsey, In T. Kinoshita, ed., Quantum Electrodynamics, 673–695. World Scientific, Singapore (1990)Google Scholar
  81. 81.
    I. I. Rabi, J. M. B. Kellogg, J. R. Zacharias, Phys. Rev. 46, 157 (1934)CrossRefADSGoogle Scholar
  82. 82.
    I. I. Rabi, J. M. B. Kellogg, J. R. Zacharias, Phys. Rev. 46, 163 (1934)CrossRefADSGoogle Scholar
  83. 83.
    J. M. B. Kellogg, I. I. Rabi, J. R. Zacharias, Phys. Rev. 50, 472 (1936)CrossRefADSGoogle Scholar
  84. 84.
    J. E. Nafe, E. B. Nelson, Phys. Rev. 73, 718 (1948)CrossRefADSGoogle Scholar
  85. 85.
    A. G. Prodell, P. Kusch, Phys. Rev. 88, 184 (1952)CrossRefADSGoogle Scholar
  86. 86.
    H. M. Goldenberg, D. Kleppner, N. F. Ramsey, Phys. Rev. Lett. 8, 361 (1960)CrossRefADSGoogle Scholar
  87. 87.
    ATRAP collaboration, http,//hussle.harvard.edu/∼atrapGoogle Scholar
  88. 88.
    ATHENA collaboration, http,//cern.ch/athenaGoogle Scholar
  89. 89.
    ALPHA collaboration, http,//alpha.web.cern.ch/alphaGoogle Scholar
  90. 90.
    ASACUSA collaboration, http,//cern.ch/asacusaGoogle Scholar
  91. 91.
    E. Widmann, J. Eades, R. Hayano, et al., In S. G. Karshenboim, F. S. Pavone, F. Bassani, et al., eds., The Hydrogen Atom, Precision Physics of Simple Atomic Systems, 528–542. Springer-Verlag Berlin Heidelberg (2001). em arXiv,nucl-ex/0102002Google Scholar
  92. 92.
    B. Juhasz, D. Barna, J. Eades, et al., In D. Grzonka, R. Czyzykiewicz, W. Oelert, et al., eds., Proceedings of LEAP03, vol. 796, 243–246. AIP (2005)Google Scholar
  93. 93.
    A. G. Martin, K. Helmerson, V. S. Bagnato, et al., Phys. Rev. Lett. 61, 2431 (1988)CrossRefADSGoogle Scholar
  94. 94.
    M. A. Kasevich, E. Riis, S. Chu, et al., Phys. Rev. Lett. 63, 612 (1989)CrossRefADSGoogle Scholar
  95. 95.
    M. Amoretti, C. Amsler, G. Bonomi, et al., Nature 419, 456 (2002)CrossRefADSGoogle Scholar
  96. 96.
    G. Gabrielse, N. S. Bowden, P. Oxley, et al., Phys. Rev. Lett. 89, 213401 (2002)CrossRefADSGoogle Scholar
  97. 97.
    G. Gabrielse, Adv. At. Mol. Opt. Phys. 50 (2005)Google Scholar
  98. 98.
    G. Gabrielse, N. S. Bowden, P. Oxley, et al., Phys. Rev. Lett. 89, 233401 (2002)CrossRefADSGoogle Scholar
  99. 99.
    G. Gabrielse, et al., Phys. Rev. Lett. 93, 073401 (2004)CrossRefADSGoogle Scholar
  100. 100.
    T. Pohl, H. R. Sadeghpour, G. Gabrielse, Phys. Rev. Lett. 97, 143401 (2006)CrossRefADSGoogle Scholar
  101. 101.
    C. H. Storry, A. Speck1, D. L. Sage, et al., Phys. Rev. Lett. 93, 263401 (2004)CrossRefADSGoogle Scholar
  102. 102.
    ASACUSA collaboration, Atomic spectroscopy and collisions using slow antiprotons. Proposal CERN-SPSC-2005-002, SPSCP-307 Add.1, CERN, Geneva, Switzerland (2005)Google Scholar
  103. 103.
    A. Mohri, Y. Yamazaki, Europhys. Lett. 63, 207 (2003)CrossRefADSGoogle Scholar
  104. 104.
    A. L. Migdall et al., Phys. Rev. Lett 54, 2596 (1985)CrossRefADSGoogle Scholar
  105. 105.
    T. Pohl, H. R. Sadeghpour, Y. Nagata, et al., Physical Review Letters 97, 213001 (2006)CrossRefADSGoogle Scholar
  106. 106.
    C. L. Cesar, D. G. Fried, T. C. Killian, et al., Phys. Rev. Lett. 77, 255 (1996)CrossRefADSGoogle Scholar
  107. 107.
    G. Andresen, W. Bertsche, A. Boston, et al., Phys. Rev. Lett. 98, 023402 (2007)CrossRefADSGoogle Scholar
  108. 108.
    G. Gabrielse, P. Larochelle, D. L. Sage, et al., Phys. Rev. Lett 98, 113002(2007).Google Scholar
  109. 109.
    T. M. Squires, P. Yesley, G. Gabrielse, Phys. Rev. Lett. 86, 5266 (2001)CrossRefADSGoogle Scholar
  110. 110.
    E. P. Gilson, J. Fajans, Phys. Rev. Lett. 90, 015001 (2003)CrossRefADSGoogle Scholar
  111. 111.
    J. Fajans, W. Bertsche, K. Burke, et al., Phys. Rev. Lett. 95, 155001 (2005)CrossRefADSGoogle Scholar
  112. 112.
    J. Walz, Physica Scripta 70, C30 (2004)CrossRefGoogle Scholar
  113. 113.
    I. D. Setija, H. G. C. Werij, O. J. Luiten, et al., Phys. Rev. Lett. 70, 2257 (1993)CrossRefADSGoogle Scholar
  114. 114.
    K. Eikema, J. Walz, T. Hänsch, Phys. Rev. Lett. 83, 3828 (1999)CrossRefADSGoogle Scholar
  115. 115.
    K. Eikema, J. Walz, T. Hänsch, Phys. Rev. Lett. 86, 5679 (2001)CrossRefADSGoogle Scholar
  116. 116.
    J. Walz, T. Hänsch, General Relativity and Gravitation36, 561 (2004)zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Stefan Meyer Institute for Subatomic PhysicsAustrian Academy of SciencesAustria

Personalised recommendations