Advertisement

Highly-charged ions and high-resolution mass spectrometry in a Penning trap

  • Sz. Nagy
  • K. Blaum
  • R. Schuch
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 749)

Abstract

This Lecture gives an introduction to high-precision measurements of atomic masses by using highly-charged ions in Penning traps. The production of highly-charged ions using Electron Beam Ion Traps and Sources (EBIT/S) for high-precision mass spectrometry will be reviewed. Ion transfer and the actual mass measuring techniques/methods will also be explained, mostly by the example of the \textsc{Smiletrap} Penning-trap mass spectrometer. Finally, we discuss selected examples of applications of high-precision atomic masses in modern physics related to fundamental problems.

Keywords

Neutrino Mass Mass Measurement Precision Trap Resistive Cool Charge Breeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Wapstra, Phys. Scripta T59, 65 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    G. Audi, Int. J. Mass. Spectrom. 251, 85 (2006).CrossRefADSGoogle Scholar
  3. 3.
    J. J. Thomson, Phil. Mag. 44, 293 (1897).Google Scholar
  4. 4.
    Nobel Lectures, Physics 1901–1921. Elsevier Publishing Company, Amsterdam (1967).Google Scholar
  5. 5.
    F. W. Aston, Nature 105, 617 (1920).ADSCrossRefGoogle Scholar
  6. 6.
    F. W. Aston, Proc. Roy. Soc. of London 115, 487 (1927).ADSCrossRefGoogle Scholar
  7. 7.
    Nobel Lectures, Chemistry 1922–1941. Elsevier Publishing Company, Amsterdam (1966).Google Scholar
  8. 8.
    G. Siuzdak, The Expanding Role of Mass Spectrometry in Biotechnology. MCC Press, San Diego (2003).Google Scholar
  9. 9.
    J. J. Thomson, Phil. Mag. and J. of Science 13, 561 (1907).Google Scholar
  10. 10.
    A. J. Dempster, Proc. Am. Phil. Soc. 55, 755 (1935).Google Scholar
  11. 11.
    K. T. Bainbridge, E. B. Jordan, Phys. Rev. 50, 282–296 (1936).ADSCrossRefGoogle Scholar
  12. 12.
    J. Mattauch, Phys. Rev. 50, 617–623 (1936).ADSCrossRefGoogle Scholar
  13. 13.
    A. O. Nier, T. R. Roberts, Phys. Rev. 81, 507–510 (1951).ADSCrossRefGoogle Scholar
  14. 14.
    R. C. Barber, et al., Rev. Sci. Instrum 42, 1 (1971).ADSCrossRefGoogle Scholar
  15. 15.
    E. Koets, J. Phy. E: Sci. Instrum. 14, 1229 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    L. G. Smith, C. C. Damm, Rev. Sci. Instrum. 27, 638 (1956).ADSCrossRefGoogle Scholar
  17. 17.
    L. G. Smith, Phys. Rev. C 4, 22 (1971).ADSCrossRefGoogle Scholar
  18. 18.
    Les Prix Nobel. Almqvist & Wiksell International, The Nobel Foundation (1989).Google Scholar
  19. 19.
    G. Gräff, H. Kalinowsky, J. Traut, Zeitschrift für Physik A 297, 35 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    R. S. VanDyck, S. L. Zafonte, P. B. Schwinberg, Hyper. Interact. 132, 163 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    J. K. Thompson, S. Rainwille, D. E. Pritchard, Nature 430, 58 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    M. Redshaw, E. Wingfield, J. McDaniel, E. G. Myers, Phys. Rev. Lett. 98, 053003 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    I. Bergström, et al., Nucl. Instr. and Meth. in Phys. Res. A 487, 618 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    K. Blaum, et al., J. Phys. B 36, 921 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    K. Blaum, Phys. Rep. 425, 1 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    H. F. Beyer, V. P. Shevelko, Introduction to the Physics of Highly Charged Ions. IOP Publishing, Bristol and Philadelphia (2003).CrossRefGoogle Scholar
  27. 27.
    J. Ongena, Phys. Scr. T123, 14–23 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    F. H. Séguin, et al., Rev. Sci. Instrum 74, 975–995 (2003).ADSCrossRefGoogle Scholar
  29. 29.
    W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields. Springer Berlin; 2nd edition (1985).Google Scholar
  30. 30.
    B. Franzke, Nucl. Instr. and Meth. B24/25, 18 (1987).ADSGoogle Scholar
  31. 31.
    G. Zschormack, et al., Rev. Sci. Instrum. 77, 03A904 (2006).CrossRefGoogle Scholar
  32. 32.
    H. Khodja, J. P. Briand, Phys. Scripta T71, 113 (1997).CrossRefADSGoogle Scholar
  33. 33.
    J. Alonso, et al., Rev. Sci. Instrum. 77, 03A901 (2006).CrossRefGoogle Scholar
  34. 34.
    V. B. Kutner, Rev. Sci. Instrum. 65, 1039 (1994).ADSCrossRefGoogle Scholar
  35. 35.
    R. Geller, Rev. Sci. Instrum. 69, 1302 (1998).CrossRefADSGoogle Scholar
  36. 36.
    R. Schuch, in D. C. Lorents, W. E. Meyerhof, J. R. Petersen (eds.), Proceedings of the XIVth International Conference on the Physics of Electronic and Atomic Collisions, Palo Alto, California, USA, 24.7. – 30.7.1985. Elsevier Science Publisher (1996).Google Scholar
  37. 37.
    R. Schuch, et al., J. Phys. B 17, 2319 (1984).ADSCrossRefGoogle Scholar
  38. 38.
    R. D. Deslattes, R. Schuch, E. Justiniano, Phys. Rev. A 32, 1911 (1985).ADSCrossRefGoogle Scholar
  39. 39.
    F. Herfurth, et al., Int. J. Mass Spectrom. 251, 266 (2006).CrossRefADSGoogle Scholar
  40. 40.
    E. D. Donets, Bull. OIPOTZ 24, 65 (1969).Google Scholar
  41. 41.
    M. A. Levine, R. E. Marrs, J. E. Henderson, D. A. Knapp, M. B. Schneider, Phys. Scripta T22, 157 (1988).ADSCrossRefGoogle Scholar
  42. 42.
    D. Schneider, et al., Phys. Rev. A 42, 3889 (1990).ADSCrossRefGoogle Scholar
  43. 43.
    D. Schneider, Hyper. Interact. 99, 47 (1996).ADSCrossRefGoogle Scholar
  44. 44.
    E. D. Donets, Rev. Sci. Phys. 69, 614 (1998).ADSGoogle Scholar
  45. 45.
    E. Beebe, L. Liljeby, Å. Engström, M. Björkhage, Phys. Scr. 47, 470 (1993).CrossRefADSGoogle Scholar
  46. 46.
    I. Bergström, et al., in K. Prelec (ed.), Electron Beam Ion Sources and Traps and Their Applications: 8th International Symposium, Upton, New York (2001). AIP Conference Proceedings 572.Google Scholar
  47. 47.
    D. Habs, et al., Hyper. Interact. 129, 43 (2000).ADSCrossRefGoogle Scholar
  48. 48.
    E. Kugler, Hyper. Interact. 129, 23–42 (2000).ADSCrossRefGoogle Scholar
  49. 49.
    B. H. Wolf, et al., Nucl. Instr. Meth. B 204, 428–432 (2003).ADSCrossRefGoogle Scholar
  50. 50.
    F. Wenander, Nucl. Phys. A 746, 40 (2004).ADSCrossRefGoogle Scholar
  51. 51.
    J. Dilling, et al., Int. J. Mass. Spectrom. 251, 198 (2006).CrossRefADSGoogle Scholar
  52. 52.
    I. G. Brown, J. E. Galvin, R. A. Macgill, M. W. West, Nucl. Instr. and Meth. B 43, 455 (1989).ADSCrossRefGoogle Scholar
  53. 53.
    D. Schneider, et al., Phys. Rev. A 44, 3119 (1991).ADSCrossRefGoogle Scholar
  54. 54.
    S. Böhm, et al., J. Phys.: Conf. Ser. 58, 303 (2007).ADSCrossRefGoogle Scholar
  55. 55.
    R. E. Marrs, S. R. Elliot, D. A. Knapp, Phy. Rev. Lett. 72, 4082 (1994).ADSCrossRefGoogle Scholar
  56. 56.
    R. E. Marrs, Rev. Sci. Instrum. 67, 941 (1996).ADSCrossRefGoogle Scholar
  57. 57.
    P. K. Ghosh, Ion Traps. Clarendon Press, Oxford (1995).Google Scholar
  58. 58.
    F. G. Major, V. N. Gheorghe, G. Werth, Charged Particle Traps. Springer (2005).Google Scholar
  59. 59.
    L. S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).ADSCrossRefGoogle Scholar
  60. 60.
    S. Rainwille, J. K. Thompson, D. E. Pritchard, Science 303, 3334 (2004).Google Scholar
  61. 61.
    S. Brunner, T. Engel, A. Schmitt, G. Werth, Eur. Phys. J. D 15, 181 (2001).ADSCrossRefGoogle Scholar
  62. 62.
    G. Gabrielse, Phy. Rev. A 27, 2277 (1983).ADSCrossRefGoogle Scholar
  63. 63.
    G. Gabrielse, F. C. Mackintosh, Int. J. Mass Spectrom. Ion Proc. 57, 1 (1984).CrossRefGoogle Scholar
  64. 64.
    F. Bloch, Physica 19, 821 (1953).ADSCrossRefGoogle Scholar
  65. 65.
    M. Kretzschmar, Phys. Scripta 46, 544 (1992).ADSCrossRefGoogle Scholar
  66. 66.
    M. König, G. Bollen, H. J. Kluge, T. Otto, J. Szerypo, Int. Jour. Mass Spec. Ion Proc. 142, 95 (1995).CrossRefADSGoogle Scholar
  67. 67.
    R. Ringle, G. Bollen, P. Schury, S. Schwarz, T. Suna, Int. J. Mass. Spectrom. 262, 33–44 (2007).CrossRefADSGoogle Scholar
  68. 68.
    S. Eliseev, et al., Int. J. Mass. Spectrom. 262, 45–50 (2007).CrossRefADSGoogle Scholar
  69. 69.
    G. Bollen, R. Moore, G. Savard, H. Stolzenberg, J. Appl. Phys. 68, 4355 (1990).ADSCrossRefGoogle Scholar
  70. 70.
    H.-U. Hasse, et al., Int. J. Mass Spectrom. 132, 181 (1994).CrossRefADSGoogle Scholar
  71. 71.
    A. Kellerbauer, T. Kim, R. B. Moore, P. Varfalvy, Nucl. Instr. Meth. A 469, 276 (2001).ADSCrossRefGoogle Scholar
  72. 72.
    G. Zwicknagel, AIP Conference Proceedings 862, 281 (2006).ADSCrossRefGoogle Scholar
  73. 73.
    N. Oshima, et al., Nucl. Instr. Meth. B 235, 504–508 (2005).ADSCrossRefGoogle Scholar
  74. 74.
    L. Gruber, Phd thesis: Cooling of Highly Charged Ions in a Penning Trap. Technische Universität Graz (2000).Google Scholar
  75. 75.
    L. Gruber, et al., Phys. Rev. Lett. 86, 636 (2001).ADSCrossRefGoogle Scholar
  76. 76.
    M. Bussmann, U. Schramm, D. Habs, V. S. Kolhinen, J. Szerypo, Int. J Mass. Spectrom. 251, 179–189 (2006).CrossRefGoogle Scholar
  77. 77.
    J. P. Holder, et al., Phys. Scripta T92, 158 (2001).ADSCrossRefGoogle Scholar
  78. 78.
    G. Gabrielse, et al., Phys. Rev. Lett. 63, 1360 (1989).ADSCrossRefGoogle Scholar
  79. 79.
    G. Gabrielse, et al., Phys. Rev. Lett. 89, 213401 (2002).ADSCrossRefGoogle Scholar
  80. 80.
    M. Amoretti, et al., Nucl. Instrum. and Methods A 518, 679 (2004).ADSCrossRefGoogle Scholar
  81. 81.
    J. Bernard, et al., Nucl. Instrum. and Meth. 532, 224–228 (2004).ADSCrossRefGoogle Scholar
  82. 82.
    H. G. Dehmelt, F. L. Walls, Phys. Rev. Lett. 21, 127–131 (1968).ADSCrossRefGoogle Scholar
  83. 83.
    D. J. Wineland, H. G. Dehmelt, J. Appl. Phys. 46, 919–930 (1975).CrossRefADSGoogle Scholar
  84. 84.
    G. I. Budker, Proc. Intern. Symp. on Electron and Positron Storage Rings, Saclay, Sept. 26–30, Rep. II-1-1, (1966).Google Scholar
  85. 85.
    G. I. Budker, Atomic Energy 22, 438 (1967).CrossRefGoogle Scholar
  86. 86.
    M. Amoretti, et al., Nature 419, 456 (2002).ADSCrossRefGoogle Scholar
  87. 87.
    I. Bergström, in R. S. I. Bergström, C. Carlberg (ed.), Proc. of Nobel Symposium 91 Lysekil, Sweden, August 19–26, 1994. World Scientific, Singapore (1994).Google Scholar
  88. 88.
    J. L. Wiza, Nucl. Instr. Meth. A 162, 587 (1979).ADSCrossRefGoogle Scholar
  89. 89.
    R. T. Birge, Phys. Rev 40, 207 (1932).zbMATHCrossRefADSGoogle Scholar
  90. 90.
    G. C. Rodrigues, M. A. Ourdane, J. Bieron, P. Indelicato, E. Lindroth, Phys. Rev. A 63, 012510 (2000).ADSCrossRefGoogle Scholar
  91. 91.
    G. C. Rodrigues, P. Indelicato, J. P. Santos, P. Patté, F. Parante, Atomic Data and Nuclear Data Tables 86, 117 (2004).ADSCrossRefGoogle Scholar
  92. 92.
    R. L. Kelly, J. Phys. Chem. Ref. Data 16, Suppl.1 (1987).Google Scholar
  93. 93.
    J. H. Scofield, LLNL Internal Report UCID-16848 (1975).Google Scholar
  94. 94.
    P. J. Mohr, B. N. Taylor, Rev. Mod. Phys. 77, 1 (2005).ADSCrossRefGoogle Scholar
  95. 95.
    R. S. Van Dyck, Jr, D. L. Farnham, S. L. Zafonte, P. B. Schwinberg, Rev. Sci. Instr. 70, 1665 (1999).ADSCrossRefGoogle Scholar
  96. 96.
    G. Gabrielse, J. Tan, J. Appl. Phys. 63, 5143–5148 (1988).ADSCrossRefGoogle Scholar
  97. 97.
    K. Blaum, et al., J. Phys. G. 31, 1775 (2005).CrossRefGoogle Scholar
  98. 98.
    S. Brunner, T. Engel, G. Werth, Meas. Sci. Technol. 6, 222 (1995).ADSCrossRefGoogle Scholar
  99. 99.
    M. Marie-Jeanne, et al., Nucl. Instrum . Meth. A 587, 464–473(2008).Google Scholar
  100. 100.
    M. P. Bradley, J. V. Porto, S. Rainville, J. K. Thompson, D. E. Pritchard, Phys. Rev. Lett. 83, 4510 (1999).ADSCrossRefGoogle Scholar
  101. 101.
    G. Gabrielse, et al., Phys. Rev. Lett. 82, 3198–3201 (1999).ADSCrossRefGoogle Scholar
  102. 102.
    S. Rainville, et al., Nature 438, 1096 (2005).ADSCrossRefGoogle Scholar
  103. 103.
    H. Schatz, K. Blaum, Europhys. News 37, 16–21 (2006).CrossRefGoogle Scholar
  104. 104.
    F. DiFilippo, V. Natarajan, K. R. Boyce, D. E. Pritchard, Phys. Rev. Lett. 73, 1481 (1994).ADSCrossRefGoogle Scholar
  105. 105.
    R. Jertz, et al., Phys. Scripta 48, 399 (1993).CrossRefADSGoogle Scholar
  106. 106.
    G. Douysset, T. Fritioff, C. Carlberg, I. Bergtröm, M. Björkhage, Phys. Rev. Lett. 86, 4259 (2001).ADSCrossRefGoogle Scholar
  107. 107.
    C. Carlberg, T. Fritioff, I. Bergtröm, Phys. Rev. Lett. 83, 4506 (1999).ADSCrossRefGoogle Scholar
  108. 108.
    I. Bergström, T. Fritioff, R. Schuch, J. Schönfelder, Physica Scripta 66, 1 (2002).CrossRefGoogle Scholar
  109. 109.
    T. Fritioff, H. Bluhme, R. Schuch, I. Bergström, M. Björkhage, Nucl. Phys. A 723, 3 (2002).ADSGoogle Scholar
  110. 110.
    Sz. Nagy, T. Fritioff, M. Björkhage, I. Bergström, R. Schuch, Europhys. Lett. 74, 404–410 (2006).ADSCrossRefGoogle Scholar
  111. 111.
    Sz. Nagy, et al., Phys. Rev. Lett. 96, 163004 (2006).ADSCrossRefGoogle Scholar
  112. 112.
    Sz. Nagy, et al., J. Phys. Conf. Ser. 58, 109–112 (2007).ADSCrossRefGoogle Scholar
  113. 113.
    I. Bergström, et al., Eur. Phys. J. D 22, 41 (2003).ADSCrossRefGoogle Scholar
  114. 114.
    Sz. Nagy, et al., Eur. Phys. J. D 39, 1 (2006).ADSCrossRefGoogle Scholar
  115. 115.
    I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, E. R. Williams, Metrologia 42, 71–80 (2005).ADSCrossRefGoogle Scholar
  116. 116.
    P. Becker, M. Gläser, Int. J. Mass Spectrom. 251, 220 (2006).CrossRefADSGoogle Scholar
  117. 117.
    G. Girard, ‘The procedure for cleaning and washing platinum-iridium kilogram prototypes used at the bureau international des poids et mesures’, BIPM Monographie, Sévres, (1990).Google Scholar
  118. 118.
    I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, E. R. Williams, Metrologia 43, 227–246 (2006).ADSCrossRefGoogle Scholar
  119. 119.
    J. W. G. Wignal, Meas. Sci. Technol. 16, 682 (2005).CrossRefGoogle Scholar
  120. 120.
    R. L. Steiner, E. R. Williams, D. B. Newell, R. Liu, Metrologia 42, 431 (2005).ADSCrossRefGoogle Scholar
  121. 121.
    J. Flowers, Science 306, 1324 (2004).CrossRefADSGoogle Scholar
  122. 122.
    R. D. Deslattes, A. Henins, Phys. Rev. Lett. 31, 972 (1973).ADSCrossRefGoogle Scholar
  123. 123.
    R. D. Deslattes, et al., Phys. Rev. Lett. 33, 463 (1974).CrossRefADSGoogle Scholar
  124. 124.
    I. Bergström, T. Fritioff, R. Schuch, J. Schönfelder, Phys. Scripta 66, 201 (2002).ADSCrossRefGoogle Scholar
  125. 125.
    R. S. Van Dyck, Jr, P. B. Schwinberg, H. G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987).ADSCrossRefGoogle Scholar
  126. 126.
    B. Odom, D. Hanneke, B. DUrso, G. Gabrielse, Phys. Rev. Lett. 97, 030801 (2006).ADSCrossRefGoogle Scholar
  127. 127.
    G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B. Odom, Phys. Rev. Lett. 97, 030802 (2006).ADSCrossRefGoogle Scholar
  128. 128.
    T. Kinoshita, Metrologia 25, 233 (1988).ADSCrossRefMathSciNetGoogle Scholar
  129. 129.
    T. Kinoshita, M. Nio, Phys. Rev. D 73, 013003 (2006).ADSCrossRefGoogle Scholar
  130. 130.
    R. P. Feynman, QED: The Strange Theory of Light and Matter. Princeton University Press (1988).Google Scholar
  131. 131.
    T. Beier, et al., Phys. Rev. A 62, 032510 (2000).ADSCrossRefGoogle Scholar
  132. 132.
    T. Beier, Phys. Rep. 339, 79 (2000).ADSCrossRefGoogle Scholar
  133. 133.
    H. Häffner, et al., Phys. Rev. Lett. 85, 5308 (2000).ADSCrossRefGoogle Scholar
  134. 134.
    J. Verdú, et al., Phys. Rev. Lett. 92, 093002 (2004).ADSCrossRefGoogle Scholar
  135. 135.
    V. A. Yerokhin, A. N. Artemyev, P. Indelicato, V. M. Shabaev, Nucl. Instrum. Meth. B 205, 47–56 (2003).ADSCrossRefGoogle Scholar
  136. 136.
    K. Pachucki, A. Czarnecki, U. D. Jentschura, V. A. Yerokhin, Phys. Rev. A 72, 022108 (2005).ADSCrossRefGoogle Scholar
  137. 137.
    G. Werth, et al., Int. J. Mass. Spectrom. 251, 152.158 (2006).CrossRefADSGoogle Scholar
  138. 138.
    M. Vogel, et al., Nucl. Instrum. Meth. B 235, 7 (2005).ADSCrossRefGoogle Scholar
  139. 139.
    T. Fritioff, et al., Int. J. Mass. Spectrom. 251, 281–285 (2006).CrossRefADSGoogle Scholar
  140. 140.
    T. Beier, et al., Phys. Rev. Lett. 88, 011603 (2002).ADSCrossRefGoogle Scholar
  141. 141.
    G. Audi, A. H. Wapstra, C. Thibault, Nucl. Phys. A 729, 1 (2003).ADSGoogle Scholar
  142. 142.
    V. M. Shabaev, et al., Phys. Rev. A 65, 062104 (2002).ADSCrossRefGoogle Scholar
  143. 143.
    T. Beier, P. Indelicato, V. M. Shabaev, V. A. Yerokhin, J. Phys. B: At. Mol. Opt. Phys. 36, 1019–1028 (2003).ADSCrossRefGoogle Scholar
  144. 144.
    W. Pauli, itph Liebe radioaktive Damen und Herren, Letter to participants of the Conference in Tübingen (1930).Google Scholar
  145. 145.
    F. Reines, C. L. Cowan, Nature 178, 446 (1956).ADSCrossRefGoogle Scholar
  146. 146.
    P. Ramond, Nucl. Phys. Proc. Suppl.,[hep-ph=9809401] 77, 1 (1999).zbMATHGoogle Scholar
  147. 147.
    Y. Fukuda, et al., Phys. Rev. Lett. 81, 1562 (1998).CrossRefADSGoogle Scholar
  148. 148.
    S. Eidelman, et al., Phys. Lett. B 592, 1 (2004).ADSCrossRefGoogle Scholar
  149. 149.
    S. Hannestad, Annu. Rev. Nucl. Part. Sci. 56, 137 (2006).ADSCrossRefGoogle Scholar
  150. 150.
    A. D. Dolgov, Phys. Rep. 370, 333–535 (2002).ADSCrossRefGoogle Scholar
  151. 151.
    E. Fermi, Z. Phys. 88, 161 (1934).zbMATHADSCrossRefGoogle Scholar
  152. 152.
    J. Angrik, et al., FZKA Sci. Rep. 9090, 1 (2004).Google Scholar
  153. 153.
    S. R. Elliott, P. Vogel, Annu. Rev. Nucl. Part. Sci. 52, 115–151 (2002).ADSCrossRefGoogle Scholar
  154. 154.
    S. R. Elliott, J. Engel, J. Phys. G: Nucl. Part. Phys. 30, R183–R215 (2004).ADSCrossRefGoogle Scholar
  155. 155.
    H. Klapdor-Kleingrothaus, A. Dietz, I. V. Krivosheina, O. Chkvorets, Nucl. Instr. Meth. A 522, 371–406 (2004).ADSCrossRefGoogle Scholar
  156. 156.
    H. Klapdor-Kleingrothaus, H.L. Harney, A. Dietz, I. V. Krivosheina, O. Chkvorets, Mod. Phys. Let. A 16, 2409 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sz. Nagy
    • 1
    • 2
  • K. Blaum
    • 2
  • R. Schuch
    • 1
  1. 1.Atomic Physics AlbaNovaStockholm UniversitySweden
  2. 2.Department of PhysicsJohannes Gutenberg-UniversityGermany

Personalised recommendations