Advertisement

Principles of Ion Traps

  • G. Werth
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 749)

Keywords

Ring Electrode Paul Trap Trap Electrode Tank Circuit Trapping Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.G. Major, V. Gheorghe, G. Werth Charged Particle Traps, Springer Heidelberg (2005).Google Scholar
  2. 2.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990).CrossRefADSGoogle Scholar
  3. 3.
    H. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1967).CrossRefGoogle Scholar
  4. 4.
    J. Meixner, F.W. Schäffke, Mathieusche Funktionen und Sphäroidfunktionen, Springer, Heidelberg (1954).Google Scholar
  5. 5.
    N.W. McLachlan, Theory and Application of Mathieu Functions, Oxford University. Press (1947).Google Scholar
  6. 6.
    R.F. Wuerker, H. Shelton, R.V. Langmuir, J. Appl. Phys. 30, 342 (1959).CrossRefADSGoogle Scholar
  7. 7.
    X.Z. Chu et al., Int. J. Mass Spectrom. Ion Processes 173, 107 (1998).CrossRefADSGoogle Scholar
  8. 8.
    R. Iffländer and G. Werth, Metrologia 13, 167 (1977).CrossRefADSGoogle Scholar
  9. 9.
    F.G. Major and H.G. Dehmelt, Phys. Rev. 170, 91 (1968).CrossRefADSGoogle Scholar
  10. 10.
    H. Schaaf, U. Schmeling, and G. Werth, Appl. Phys. 25, 249 (1981).CrossRefADSGoogle Scholar
  11. 11.
    L.S. Cutler et al., Appl. Phys. B 36, 137 (1985).CrossRefADSGoogle Scholar
  12. 12.
    G. Kotowski, Z. Angew. Math.Mech. 23, 213 (1943).zbMATHGoogle Scholar
  13. 13.
    Y. Wang, F. Franzen, and K, Wanzek, Int. J. Mass Spectrom. 124, 125 (1993).CrossRefADSGoogle Scholar
  14. 14.
    R. Alheit et al., Int. J. Mass Spectrom. 154, 155 (1996).CrossRefADSGoogle Scholar
  15. 15.
    G. Tommaseo et al., Eur. Phys. J. D 28, 29 (2004).ADSGoogle Scholar
  16. 16.
    L.S. Brown and G. Gabrielse, Phys. Rev. A25, 2423 (1982).CrossRefADSGoogle Scholar
  17. 17.
    M. Kretschmar, Z. Naturf. 45a, 965 (1990).Google Scholar
  18. 18.
    L.S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).CrossRefADSGoogle Scholar
  19. 19.
    G. Bollen et al., J. Appl. Phys. 68, 4355 (1990).CrossRefADSGoogle Scholar
  20. 20.
    C. Gerz, D. Wilsdorf, and G. Werth, Nucl. Instrum. Meth. B 47, 453 (1990).CrossRefADSGoogle Scholar
  21. 21.
    R.S. Van Dyck et al., Phys. Rev. A 40, 6308 (1898).CrossRefGoogle Scholar
  22. 22.
    P. Paasche et al., Eur. Phys. J. D 22, 183 (2003).ADSGoogle Scholar
  23. 23.
    G. Savard et al., Phys. Lett. A158, 247 (1991).CrossRefADSGoogle Scholar
  24. 24.
    Ch. Lichtenberg et al., Eur. Phys. J. D 2, 29 (1998).CrossRefADSGoogle Scholar
  25. 25.
    X.-P. Huang, et al., Phys. Rev. Lett. 78, 875 (1997).CrossRefADSGoogle Scholar
  26. 26.
    E.M. Hollmann, F. Anderegg, and C.F. Driscoll, Phys. Plasmas 7, 2776 (2000).CrossRefADSGoogle Scholar
  27. 27.
    G. Bollen et al., Nucl. Instrum. Meth. A 368, 675 (1996).CrossRefADSGoogle Scholar
  28. 28.
    H.A. Schuessler and O. Chun-sing, Nucl. Instrum. Meth. 186, 219 (1981).CrossRefADSGoogle Scholar
  29. 29.
    J. Coutandin and G. Werth, Appl. Phys. B 29, 89 (1982).CrossRefADSGoogle Scholar
  30. 30.
    F. Herfurth et al., Nucl. Instrum. Meth. A 469, 254 (2001).CrossRefADSGoogle Scholar
  31. 31.
    H. Raimbault-Hartmann et al., Nucl. Instrum. Meth. B 126, 378 (1997).CrossRefGoogle Scholar
  32. 32.
    R. Alheit et al., Int. J. Mass Spectrom. Ion Process. 154, 155 (1996).CrossRefADSGoogle Scholar
  33. 33.
    F. Vedel and M. Vedel, Phys. Rev. A 41, 2348 (1990).CrossRefADSGoogle Scholar
  34. 34.
    K. Blaum, Phys. Rep. 425, 1 (2006).CrossRefADSGoogle Scholar
  35. 35.
    H.G.Dehmelt, Bull. Am. Phys. Soc.7, 470 (1962); H.G. Dehmelt and F.L. Walls, Phys. Rev. Lett. 21, 127 (1968); D.A. Church and H.G. Dehmelt, J. Appl. Phys. 40, 342 (1969).Google Scholar
  36. 36.
    G. Werth, H Haeffner, W.Quint, Adv. At., Mol. and Opt. Phys. 48, 191 (2002).ADSGoogle Scholar
  37. 37.
    M. Block et al., J. Phys. B 33, L375 (2000).CrossRefADSGoogle Scholar
  38. 38.
    W. Neuhauser et al., Phys. Rev. A 22, 1137 (1980).CrossRefADSGoogle Scholar
  39. 39.
    F.G. Major and H.G. Dehmelt, Phys. Rev. 170, 91 (1968).CrossRefADSGoogle Scholar
  40. 40.
    F. Arbes et al., Z. Phys. D 25, 295 (1993).CrossRefADSGoogle Scholar
  41. 41.
    G. Bollen et al., J. Appl. Phys. 68, 4355 (1990).CrossRefADSGoogle Scholar
  42. 42.
    G. Savard et al., Phys. Lett. A 158, 247 (1991).CrossRefADSGoogle Scholar
  43. 43.
    D.J. Wineland and H.G. Dehmelt, J. Appl. Phys. 46, 919 (1975).CrossRefADSGoogle Scholar
  44. 44.
    J. Bergquist, W. Itano, and D.J. Wineland, Phys. Rev. A 36, 428 (1987).CrossRefADSGoogle Scholar
  45. 45.
    F. Schmidt-Kaler et al., J. Mod. Opt. 47, 1573 (2000).Google Scholar
  46. 46.
    S.Peil and G. Gabrielse, Phys. Rev. Lett.83, 1287 (1999).CrossRefADSGoogle Scholar
  47. 47.
    G. Werth, Phys Scripta T59, 206 (1995).CrossRefADSGoogle Scholar
  48. 48.
    S.A. Diddams et al., Science 306, 1318 (2004).CrossRefADSGoogle Scholar
  49. 49.
    R.S. Van Dyck, P.B. Schinberg, and H.G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987).CrossRefADSGoogle Scholar
  50. 50.
    B. Odom, D. Hanneke, B. D’Urso, G. Gabrielse, Phys. Rev. Lett. 97, 030801 (2006).CrossRefADSGoogle Scholar
  51. 51.
    G. Gabrielse et al., Phys. Rev. Lett. 97, 030802 (2006).CrossRefADSGoogle Scholar
  52. 52.
    D. Kielpinski, C.R. Monroe, and D.J. Wineland, Nature 417, 709(2002).CrossRefADSGoogle Scholar
  53. 53.
    H. Häffner, et al., Nature 438, 643(2005).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • G. Werth
    • 1
  1. 1.Johannes Gutenberg UniversityGermany

Personalised recommendations