Turbulent Eddies in the RANS/LES Transition Region

  • Ugo Piomelli
  • Senthilkumaran Radhakrishnan
  • Giuseppe De Prisco
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 97)


Hybrid RANS/LES methods combine the advantages of RANS models in terms of simulation costs, with the ability of LES to capture unsteady flow structures. A problem encountered in applications of this technique is the transmission of information between the RANS and LES zones: in the RANS region only mean-flow data is available, and the Reynolds shear stresses are entirely supported by the turbulence model; in the LES region, on the other hand, turbulent eddies must be present to support the turbulent momentum transport. The generation of these eddies is a critical ingredient in determining the effectiveness and accuracy of a hybrid method. In this paper we discuss this problem for applications in which the RANS region is below the LES zone, and in cases in which the flow advects from RANS to LES regions. We will also present recent results from our research group.


Reynolds Stress Eddy Viscosity Reynolds Shear Stress Turbulent Eddy Streaky Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balaras, E., Benocci, C., Piomelli, U.: Two layer approximate boundary conditions for large-eddy simulations. AIAA Journal 34, 1111–1119 (1996)zbMATHGoogle Scholar
  2. Batten, P., Goldberg, U., Chakravarthy, S.: Interfacing statistical turbulence closures with large-eddy simulation. AIAA Journal 42, 485–492 (2004)Google Scholar
  3. Cabot, W., Moin, P.: Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flows. Flow Turbul. Comb. 63, 269 (2000)zbMATHCrossRefGoogle Scholar
  4. Davidson, L., Peng, S.: Hybrid LES-RANS model ling: a one equation SGS model combined with a kω model for predicting recirculating flows. International Journal of Heat and Fluid Flow 43, 1003–1018 (2003)zbMATHGoogle Scholar
  5. Davidson, L.: Hybrid LES-RANS: Inlet Boundary Conditions. In: Skallerud, B., Andersson, H. (eds.) 3rd National Conference on Computational Mechanics – MekIT 2005, pp. 7–22 (2005)Google Scholar
  6. Davidson, L., Dahlstrom, S.: Hybrid LES-RANS: An approach to make LES applicable at high Reynolds number. International Journal of Computational Fluid Dynamics 19, 415–427 (2005)CrossRefMathSciNetGoogle Scholar
  7. Deardorff, J.W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics 41, 453 (1970)zbMATHCrossRefGoogle Scholar
  8. De Prisco, G.: Hybrid RANS-LES simulations of non-equilibrium boundary layers. Ph.D. Dissertation, University of Maryland (2007)Google Scholar
  9. Diurno, G.V., Balaras, E., Piomelli, U.: Wall-layer models for LES of separated flows. In: Geurts, B. (ed.) Modern Simulation Strategies for Turbulent Flows, Philadelphia, RT Edwards, pp. 207–222 (2001)Google Scholar
  10. Dubief, Y., Delcayre, F.: On coherent-vortex identification in turbulence. Journal of Turbulence 1, 1–22 (2000)CrossRefMathSciNetGoogle Scholar
  11. Hamba, F.: A hybrid RANS/LES simulation of high-Reynolds-number channel flow using additional filtering at the interface. Theoretical and Computational Fluid Dynamics 20, 89–101 (2006)zbMATHCrossRefGoogle Scholar
  12. Keating, A., Piomelli, U.: A dynamic stochastic forcing method as a wall-layer model for large-eddy simulation. Journal of Turbulence 7(12), 1–24 (2006)CrossRefMathSciNetGoogle Scholar
  13. Keating, A., et al.: A priori and a posteriori tests of inflow conditions for large-eddy simulation. Physics of Fluids 16(12), 4696–4712 (2004)CrossRefGoogle Scholar
  14. Keating, A., De Prisco, G., Piomelli, U.: Interface conditions for hybrid RANS/LES calculations. International Journal of Heat and Fluid Flow 27, 777–788 (2006)CrossRefGoogle Scholar
  15. Klein, M., Sadkiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. Journal of Computational Physics 186, 652–665 (2003)zbMATHCrossRefGoogle Scholar
  16. Labourasse, E., Sagaut, P.: Reconstruction of Turbulent Fluctuations Using a Hybrid RANS/LES Approach. Journal of Computational Physics 182, 301–336 (2002)zbMATHCrossRefGoogle Scholar
  17. Lund, T.S., Wu, X., Squires, K.D.: Generation of inflow data for spatially- developing boundary layer simulations. Journal of Computational Physics 140, 233–258 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  18. Mathey, F., et al.: Assessment of the vortex method for large-eddy simulation inlet conditions. Prog. Comput. Fluid Dyn. 6, 59–67 (2006)MathSciNetGoogle Scholar
  19. Meneveau, C., Lund, T.S., Cabot, W.H.: A Lagrangian dynamic subgrid-scale model of turbulence. Journal of Fluid Mechanics 319, 353–385 (1996)zbMATHCrossRefGoogle Scholar
  20. Na, Y., Moin, P.: Direct numerical simulation of a separated turbulent boundary layer. Journal of Fluid Mechanics 374, 279–405 (1998)CrossRefMathSciNetGoogle Scholar
  21. Nikitin, N.V., et al.: An approach to wall modeling in large-eddy simulations. Physics of Fluids 12, 1629–1632 (2000)CrossRefGoogle Scholar
  22. Piomelli, U., et al.: The inner-outer layer interface in large-eddy simulations with wall-layer models. International Journal of Heat and Fluid Flow 24, 538–550 (2003)CrossRefGoogle Scholar
  23. Radhakrishnan, S., et al.: Reynolds-averaged and large-eddy simulations of turbulent non-equilibrium flows. Journal of Turbulence 7(63), 1–30 (2006)CrossRefMathSciNetGoogle Scholar
  24. Sandham, N.D., Yao, Y., Lawal, A.: Large-eddy simulation of transonic turbulent flow over a bump. International Journal of Heat and Fluid Flow 24, 584–595 (2004)CrossRefGoogle Scholar
  25. Schlüter, J.U., Pitsch, H., Moin, P.: LES inflow conditions for coupling with Reynolds-averaged flow solvers. AIAA Journal 42, 478–484 (2004)CrossRefGoogle Scholar
  26. Schlüter, J.U., et al.: Integrated LES-RANS of an Entire High-Spool of a Gas Turbine. AIAA Paper 2006-897 (2006)Google Scholar
  27. Smirnov, A., Shi, S., Celik, I.: Random flow generation technique for large eddy simulations and particle-dynamics modeling. ASME Journal of Fluids Engineering 123, 359–371 (2001)CrossRefGoogle Scholar
  28. Song, S., Eaton, J.K.: Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. Experiments in Fluids 36, 246–258 (2004)CrossRefGoogle Scholar
  29. Spalart, P.R., Allmaras, S.: A One-Equation Turbulence Model for Aerodynamic Flows. La Recherche Aérospatiale 1, 5–21 (1994)Google Scholar
  30. Spalart, P.R., et al.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z. (eds.) Advances in DNS/LES, pp. 137–148. Greyden Press, Columbus (1997)Google Scholar
  31. Speziale, C.G.: Turbulence modelling for time-dependent RANS and VLES: A review. AIAA Paper 97-2051 (1997)Google Scholar
  32. Spille-Kohoff, A., Kaltenbach, H.-J.: Generation of turbulent inflow data with a prescribed shear-stress profile. In: Liu, C., Sakell, L., Beutner, T. (eds.) DNS/LES Progress and challenges, pp. 319–326. Greyden Press, Columbus (2001)Google Scholar
  33. Squires, K.D.: Detached-Eddy Simulation: Current Status and Perspectives. In: Friedrich, R., Geurts, B.J., Ḿétais, O. (eds.) Direct and large-eddy simulation V, pp. 465–480. Dordrecht, Kluwer (2004)Google Scholar
  34. Terracol, M.: A zonal RANS/LES approach for noise sources prediction. In: Rodi, W., Mulas, M. (eds.) Engineering Turbulence Modelling and Experiments 6, pp. 699–708. Elsevier, Amsterdam (2005)Google Scholar
  35. Temmerman, L., et al.: A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers. International Journal of Heat and Fluid Flow 26, 173–190 (2005)CrossRefGoogle Scholar
  36. Wang, M., Moin, P.: Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Physics of Fluids 14, 2043–2051 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ugo Piomelli
    • 1
  • Senthilkumaran Radhakrishnan
    • 1
  • Giuseppe De Prisco
    • 1
  1. 1.University of MarylandUSA

Personalised recommendations