Advertisement

Numerical Simulation of the Dynamic Stall of a NACA 0012 Airfoil Using DES and Advanced OES/URANS Modelling

  • G. Martinat
  • Y. Hoarau
  • M. Braza
  • J. Vos
  • G. Harran
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 97)

Abstract

This paper provides a study of the dynamic stall of a pitching NACA 0012 airfoil at 106 Reynolds number by means of numerical simulation. A 2D study is carried out comparing three OES and URANS turbulence models (URANS, URANS k-ω SST and k-ε OES). Then a 3D computation is performed using DES Spalart modelling. URANS k-ω SST is providing the best results for 2D computations.

Keywords

High Reynolds Number Eddy Diffusion Lead Edge Vortex Edge Vortex Cylinder Wake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bourguet, R., et al.: Anisotropic eddy viscosity concept fot strongly detached unsteady flows. AIAA Journal 45 (2007)Google Scholar
  2. Braza, M., Perrin, R., Hoarau, Y.: Turbulence properties in the cylinder wake at high Reynolds number. Journal of fluids and Structures 22 (2006)Google Scholar
  3. Cantwell, B., Coles, D.: An experimental study of entrainment an transport in the turbulent wake of a circular cylinder. Journal of fluid mechanics 136 (1984)Google Scholar
  4. Djeridi, H., et al.: Near-wake turbulence propertiesaround a circular cylinder at high Reynolds number. Flow turbulence and combustion 71 (2003)Google Scholar
  5. Jin, G., Braza, M.: A two equation turbulence modelfor unsteady separated floxs around airfoils. AIAA Journal 32 (1994)Google Scholar
  6. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. Journal of fluid mechanics 68 (1975)Google Scholar
  7. McAlister, K.W., et al.: An experimental study of dynamic stall on advanced aifoil sections. NASA/ TM-84245 (1982)Google Scholar
  8. Mc Croskey, W.J.: Unsteady airfoils. Annual review of fluid mechanics 14 (1982)Google Scholar
  9. Mc Croskey, W.J.: The phenomenon od dynamic stall. NASA report: NASA/TM-81264 (1981)Google Scholar
  10. Menter, F.R.: Zonal two equation k-ω turbulence models for aerodynamics flows. AIAA Paper, 93-2906 (1993)Google Scholar
  11. Perrin, R., et al.: Phase-averaged measurements of the turbulence properties in the near wake of a cyrcular cylinder at high Reynolds number by 2C-PIV and 3C-PIV. Experiments in fluids 42 (2007)Google Scholar
  12. Reynolds, W.C., Hussain, A.K.M.F.: The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparison with experiments. Journal of Fluid Mechanics 54 (1971)Google Scholar
  13. Spalart, P.R., Allmaras, S.R.: A one equation turbulence modelm for aerodynamics flows. AIAA Paper, 92-0439 (1993)Google Scholar
  14. Travin, A., et al.: Detached eddy simulation past a circular cylinder. Flow, turbulence and combusiton 63 (1999)Google Scholar
  15. Vos, J., et al.: Recent advances in aerodynamics inside the nsmb (Navier Stokes Multi Blocks) consortium. AIAA Paper, 1998-0802Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • G. Martinat
    • 1
  • Y. Hoarau
    • 2
  • M. Braza
    • 1
  • J. Vos
    • 3
  • G. Harran
    • 1
  1. 1.Institut de Mécanique des Fluides de ToulouseFrance
  2. 2.Institut de Mécanique des Fluides et Solides de StrasbourgFrance
  3. 3.Computational Fluid and Structure EngineeringSwitzerland

Personalised recommendations