Advertisement

Demonstration of Improved DES Methods for Generic and Industrial Applications

  • C. Mockett
  • B. Greschner
  • T. Knacke
  • R. Perrin
  • J. Yan
  • F. Thiele
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 97)

Abstract

This paper presents an overview of the DES methods implemented at the Institute of Fluid Mechanics and Engineering Acoustics (ISTA) at the TU-Berlin during the course of the European DESider project. As well as the validation of these methods on the basis of simplified, academic flow cases presented in the first part, their suitability and necessity for complex industrial applications is demonstrated using results from other research projects. The methods prove robust and reliable for a wide range of applications, ranging from external to internal flows, from bluff bodies with massive separation to the partial resolution of attached boundary layers.

Keywords

Eddy Viscosity Bluff Body RANS Model Noise Prediction Attached Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunge, U., Mockett, C., Thiele, F.: Guidelines for implementing detached-eddy simulation using different models. Aer. Sc. & Tech. 11(5), 376–385 (2007)CrossRefGoogle Scholar
  2. Edwards, J., Chandra, S.: Comparison of eddy viscosity-transport turbulence models for three-dimensional, shock-separated flowfields. AIAA J 34(4), 756–763 (1996)Google Scholar
  3. Haase, W., et al. (eds.): FLOMANIA - A European initiative on flow physics modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 94. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  4. Lübcke, H., Rung, T., Thiele, F.: Prediction of the spreading mechanisms of 3D turbulent wall jets with explicit Reynolds-stress closures. In: Eng. Turb. Mod. & Exp., vol. 5, pp. 127–145. Elsevier, Amsterdam (2002)Google Scholar
  5. Menter, F., Kuntz, M.: Adaption of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In: Lecture notes in applied and computational mechanics, vol. 19, Springer, Heidelberg (2004)Google Scholar
  6. Mockett, C., Bunge, U., Thiele, F.: Turbulence modelling in application to the vortex shedding of stalled airfoils. In: Eng. Turb. Mod. & Exp., vol. 6, pp. 617–626. Elsevier, Amsterdam (2005)Google Scholar
  7. Mockett, C., et al.: Analysis of detached-eddy simulation for the flow around a circular cylinder with reference to PIV data. In: Proc. IUTAM Symp. Unsteady Separated Flows and their Control, Corfu, Greece (2007)Google Scholar
  8. Nikitin, N., et al.: An approach to wall modeling in large-eddy simulations. Phys. of Fluids 12(7), 1629–1632 (2000)CrossRefGoogle Scholar
  9. Perrin, R., et al.: Phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. In: Proc. 13th Int. Symp. Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2006)Google Scholar
  10. Rung, T., Thiele, F.: Computational modelling of complex boundary-layer flows. In: Proc. 9th Int. Symp. Transport Phenomena in Thermal-Fluid Engineering, Singapore (1996)Google Scholar
  11. Rung, T., et al.: Restatement of the Spalart–Allmaras eddy-viscosity model in strain-adaptive formulation. AIAA J 41(7), 1396–1399 (2003)Google Scholar
  12. Spalart, P., et al.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Adv. in DNS/LES 1 (1997)Google Scholar
  13. Spalart, P., et al.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. & Comp. Fl. Dyn. 20, 181–195 (2006)zbMATHCrossRefGoogle Scholar
  14. Travin, A., et al.: Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In: Proc. 412th Euromech Coll. LES and Complex Transitional and Turbulent Flows, Munich, Germany (2000)Google Scholar
  15. Travin, A., et al.: Improvement of delayed detached-eddy simulation for LES with wall modelling. In: Proc. Eur. Conf. Comp. Fl. Dyn. ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands (2006)Google Scholar
  16. Wilcox, D.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26, 1299–1310 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  17. Wray, A.: Unpublished DNS data. In: Test Cases for the Validation of Large-Eddy Simulations of Turbulent Flows (1997), ftp://torroja.dmt.upm.es
  18. Xue, L.: Entwicklung eines effizienten parallelen Lösungsalgorithmus zur dreidimensionalen Simulation komplexer turbulenter Strömungen. PhD thesis, Technische Universität Berlin, Universitätsbibliothek (Diss.-Stelle) (1998)Google Scholar
  19. Yan, J., Mockett, C., Thiele, F.: Investigation of alternative length scale substitutions in detached-eddy simulation. Flow, Turb. & Comb. 74(1), 85–102 (2005)zbMATHCrossRefGoogle Scholar
  20. Yan, J., et al.: Computation of jet noise using a hybrid approach. AIAA Paper, 2007–3621 (to be published, 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • C. Mockett
    • 1
  • B. Greschner
    • 1
  • T. Knacke
    • 1
  • R. Perrin
    • 1
  • J. Yan
    • 1
  • F. Thiele
    • 1
  1. 1.ISTATU-BerlinGermany

Personalised recommendations