Skip to main content

Comparison of DES and LES on the Transitional Flow of Turbine Blades

  • Conference paper
Advances in Hybrid RANS-LES Modelling

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 97))

  • 3126 Accesses

Abstract

The prediction of the laminar to turbulence transition is essential in the calculation of turbine blades, compressor blades or airfoils of airplanes since a non negligible part of the flow field is laminar or transitional. In this paper we compare the prediction capability of the Detached Eddy Simulation (DES) with the Large Eddy Simulation (LES) using the high-pass filtered (HPF) Smagorinsky model (Stolz et al., 2003) when applied to the calculation of transitional flows on turbine blades. Detailed measurements from (Canepa et al, 2003) of the well known VKI-turbine blade served to compare our results with the experiments. The calculations have been made on a fraction of the blade (10%) using non-reflective boundary conditions of Freund at the inlet and outlet plane extended to internal flows by (Magagnato et al., 2006) in combination with the Synthetic Eddy Method (SEM) proposed by (Jarrin et al., 2005). The SEM has also been extended by (Pritz et al., 2006) for compressible flows. It has been repeatedly shown that hybrid approaches can satisfactory predict flows of engineering relevance. In this work we wanted to investigate if they can also be used successfully in this difficult test case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boris, J.P., et al.: New insights into large-eddy simulation. Fluid Dyn. Res. 10, 199–228 (1992)

    Article  Google Scholar 

  • Bradshaw, P.: Compressible Turbulent Shear Layers. Ann. Rev. Fluid Mech. 9, 33–54 (1977)

    Article  Google Scholar 

  • Canepa, E., et al.: Transitional boundary layer on the suction side of a turbine blade at different Reynolds numbers. In: Proc., 5th European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics, Prague (2003)

    Google Scholar 

  • Jarrin, N., et al.: A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations. In: Symposium on Hybrid RANS-LES Methods, Stockholm (2005)

    Google Scholar 

  • Freund, J.B.: Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound. AIAA-Paper 35(4), 740–742 (1997)

    Article  MATH  Google Scholar 

  • Magagnato, F.: KAPPA – Karlsruhe parallel program for aerodynamics. TASK quarterly 2(2), 215–270 (1998)

    Google Scholar 

  • Magagnato, F., Rachwalski, J., Gabi, M.: An application of the buffer layer technique to computations of flow in turbomachinery. In: Proc., 12th International Conference on Fluid Flow Technologies, Budapest, Hungary (2003)

    Google Scholar 

  • Magagnato, F., Pritz, B., Gabi, M.: Calculation of a Turbine Blade at High Reynolds Numbers by Large-Eddy Simulation. In: The 11th of International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii (2006)

    Google Scholar 

  • Michelassi, V., Wissink, J.G., Rodi, W.: DNS, LES and URANS of periodic unsteady flow in a LP turbine cascade: a comparison. In: Proc., 5th European Conf. on Turbomachinery: Fluid Dynamics and Thermodynamics, Prague (2003)

    Google Scholar 

  • Pritz, B., Magagnato, F., Gabi, M.: Inlet Condition for Large-Eddy Simulation Applied to a Combustion Chamber. In: Conference on Modelling Fluid Flow, Budapest, Hungary (2006)

    Google Scholar 

  • Smagorinsky, J.: General Circulation Experiments with the primitive Equations. Mon. Weather Review 93, 99–164 (1963)

    Article  Google Scholar 

  • Stolz, S., et al.: High-Pass filtered Eddy-Viscosity Models for LES. In: Friedrich, V.R., Geurts, B.J., Metais, O. (eds.) Direct and Large-Eddy Simulation, pp. 81–88. Kluwer, Dordrecht (2003)

    Google Scholar 

  • Spalart, P.R., et al.: Comments on the feasability ot the LES for wings and on the hybrid RANS/LES approach. In: Adv. in DNS/LES, 1st AFOSR International Conference On DNS/LES, pp. 137–148. Greyden Press (1997)

    Google Scholar 

  • Spalart, P.R.S., et al.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)

    Article  MATH  Google Scholar 

  • Schlatter, P.: Large-Eddy Simulation of the transition and turbulence in wall-bounded shear flow. Ph.D. Thesis No. 16000, ETH-Zurich (2005)

    Google Scholar 

  • Ubaldi, M., et al.: Detailed velocity and turbulence measurements of the profile boundary layer in a large scale turbine cascade, ASME Paper No. 96-GT-42 (1996)

    Google Scholar 

  • Vreman, A.W.: The filtering Analog of the Variational Multiscale Method in Large-Eddy Simulation. Physics of Fluids 15, L61–L64 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shia-Hui Peng Werner Haase

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Magagnato, F., Pritz, B., Gabi, M. (2008). Comparison of DES and LES on the Transitional Flow of Turbine Blades. In: Peng, SH., Haase, W. (eds) Advances in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77815-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77815-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77813-4

  • Online ISBN: 978-3-540-77815-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics