Reliability of LES in Complex Applications

  • Bernard J. Geurts
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 97)


The accuracy of large-eddy simulations is limited, among others, by the quality of the subgrid parameterisation and the numerical contamination of the smaller retained flow-structures. We review the effects of discretisation and modelling errors from two different perspectives. First, we review a database-approach to assess the total simulation error and its numerical and modelling contributions. The interaction between the different sources of error in the kinetic energy is shown to lead to their partial cancellation. An ‘optimal refinement strategy’ for given subgrid model, given discretisation method and given flow conditions is identified, leading to minimal total simulation error at given computational cost. We provide full detail for homogeneous decaying turbulence in a ‘Smagorinsky fluid’. The optimal refinement strategy is compared with the error-reduction that arises from grid-refinement of the dynamic eddy-viscosity model. Dynamic modelling yields significant error reduction upon grid refinement. However, at coarse resolutions high error-levels remain. To address this deficiency in eddy-viscosity modelling, we then consider a new successive inverse polynomial interpolation procedure with which the optimal Smagorinsky constant may be efficiently approximated at any given resolution. The computational overhead of this optimisation procedure is well justified in view of the achieved reduction of the error-level relative to the ’no-model’ and dynamic model predictions.


Direct Numerical Simulation Total Error Direct Numerical Simulation Data Smagorinsky Model Complex Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brent, R.: Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs (1973)zbMATHGoogle Scholar
  2. Germano, M., et al.: A dynamic subgrid-scale model. Phys. Fluids 3, 1760 (1991)Google Scholar
  3. Geurts, B.J.: Elements of direct and large eddy simulation. Edwards Publishing, Inc. (2003)Google Scholar
  4. Geurts, B.J., van der Bos, F.: Numerically induced high-pass dynamics in large-eddy simulation. Phys. of Fluids 17, 125103 (2005)CrossRefGoogle Scholar
  5. Geurts, B.J., Froehlich, J.: A framework for predicting accuracy limitations in large eddy simulation. Phys. of Fluids 14, L41(2002)Google Scholar
  6. Geurts, B.J., Meyers, J.: Successive inverse polynomial interpolation to optimize Smagorinsky’s model for large-eddy simulation of homogeneous turbulence. Physics of Fluids 18, 118102 (2006)CrossRefMathSciNetGoogle Scholar
  7. Ghosal, S.: An analysis of numerical errors in large-eddy simulations of turbulence. J. Comp. Phys. 125, 187 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. Lesieur, M., Metais, O.: New Trends in Large-Eddy Simulations of Turbulence. Ann. Rev. Fluid Mech. 28, 45 (1996)CrossRefMathSciNetGoogle Scholar
  9. Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large eddy simulation. Ann. Rev. Fluid Mech. 32, 1 (2000)CrossRefMathSciNetGoogle Scholar
  10. Meyers, J., Geurts, B.J., Baelmans, M.: Database analysis of errors in large eddy simulation. Phys. of Fluids 15, 2740 (2003)CrossRefGoogle Scholar
  11. Meyers, J., Geurts, B.J., Baelmans, M.: Optimality of the dynamic procedure for large-eddy simulation. Phys. Fluids 17, 045108 (2005)CrossRefGoogle Scholar
  12. Meyers, J., Geurts, B.J., Sagaut, P.: Optimal model parameters for multi-objective large-eddy simulatons. Phys. of Fluids 18, 095103 (2006)CrossRefMathSciNetGoogle Scholar
  13. Pope, S.B.: Turbulent flows. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  14. Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flows. Ann.Rev. Fl. Mech. 16, 99 (1984)CrossRefGoogle Scholar
  15. Sagaut, P.: Large eddy simulation for incompressible flows; an introduction. In: Scientific Computation, Springer, Heidelberg (2001)Google Scholar
  16. Salvetti, M.V., Beux, F.: The effect of the numerical scheme on the subgrid scale term in large-eddy simulation. Phys. of Fluids 10, 3020 (1998)CrossRefGoogle Scholar
  17. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99 (1963)CrossRefGoogle Scholar
  18. Vreman, A.W., Geurts, B.J., Kuerten, J.G.M.: Comparison of numerical schemes in Large Eddy Simulation of the temporal mixing layer. Int. J. Num. Meth. in Fluids 22, 299 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bernard J. Geurts
    • 1
  1. 1.Multiscale Modeling and Simulation, Faculty EEMCS, University of Twente, The Netherlands, and, Anisotropic Turbulence, Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of, TechnologyThe Netherlands

Personalised recommendations