Advertisement

DES Analysis of Confined Turbulent Swirling Flows in the Sub-critical Regime

  • A. C. Benim
  • M. P. Escudier
  • A. Nahavandi
  • K. Nickson
  • K. J. Syed
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 97)

Abstract

DES are applied to confined turbulent swirling flows exhibiting vortex breakdown. The DES results are compared with measurements obtained on a water test rig operating at a Reynolds number of 4600, and with further predictions obtained via different modelling strategies such as the Reynolds Stress Model (RSM) based URANS and LES. In the LES, the standard Smagorinsky model, and its modification by Voke are used as the subgrid scale models. DES and LES results are observed to be in better agreement with the experiments, compared to the URANS-RSM predictions. The overall performance of DES is observed to be similar to that of LES computations, though, a slight superiority of DES compared to LES can still be claimed, for the considered test case.

Keywords

Large Eddy Simulation Vortex Breakdown Reynolds Stress Model Swirl Generator Large Eddy Simulation Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANSYS-CFX-10 Solver Manual: ANSYS Europe, Oxfordshire, UK (2006)Google Scholar
  2. Benim, A.C.: Finite element Analysis of confined swirling flows. Int. J. Numer. Methods Fluids 11, 697–717 (1990)zbMATHCrossRefGoogle Scholar
  3. Benim, A.C., Nahavandi, A.: A computational analysis of turbulent swirling flows. In: Hanjalic, K., Nagano, Y., Tummers, M.J. (eds.) Turbulence, Heat and Mass Transfer 4, Begell House, New York, pp. 715–722 (2003)Google Scholar
  4. Benim, A.C., Nahavandi, A., Syed, K.J.: URANS and LES analysis of turbulent swirling flows. Prog. Comput. Fluid Dynamics 5, 444–454 (2005)CrossRefGoogle Scholar
  5. Benim, A.C., et al.: URANS, LES and DES Analysis of Turbulent Swirling Flows in Gas Turbine Combustors. WSEAS Transactions on Fluid Mechanics 1, 465–472 (2006)Google Scholar
  6. Escudier, M.P., Bornstein, J., Zehnder, N.: Observations and LDA measurements of confined turbulent vortex flow. Journal of Fluid Mechanics 98, 463–490 (1980)CrossRefGoogle Scholar
  7. Escudier, M., Keller, J.J.: Vortex breakdown: A two-stage transition, Aerodynamics of vertical type flows in three dimensions, AGARD CP No. 342 (1983)Google Scholar
  8. Fröhlich, J., et al.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. Journal of Fluid Mechanics 526, 19–66 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. Hogg, S., Leschziner, M.A.: Computation of highly swirling confined flow with a Reynolds stress turbulence model. AIAA J. 27, 57–63 (1989)CrossRefGoogle Scholar
  10. Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, stream and convergence zones in turbulent flows, Report CTR-S88, Center for Turbulence Research, Stanford U (1988)Google Scholar
  11. Jakirlic, S., Jester-Zürker, R., Tropea, C.: Joint effects of geometry confinement and swirling inflow on turbulent mixing in model combustors: A second-moment closure study. Prog. Comput. Fluid Dynamics 4, 198–207 (2004)CrossRefGoogle Scholar
  12. Launder, B.E., Sharma, B.T.: Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat and Mass Transfer 1, 131–138 (1974)CrossRefGoogle Scholar
  13. Menter, F.R.: Two equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32, 1598–1695 (1994)Google Scholar
  14. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (2002)zbMATHGoogle Scholar
  15. Sagaut, P., Comte, P., Ducros, F.: Filtered subgrid-scale models. Phys. Fluids 12, 233–236 (2000)CrossRefzbMATHGoogle Scholar
  16. Smagorinsky, J.: General circulation experiments with the primitive equations. I: The basic experiment, Month. Weath. Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  17. Speziale, C.G., Sarkar, S., Gatski, T.B.: Modelling the pressure-strain correlation of turbulence. J. Fluid Mechanics 227, 245–272 (1991)zbMATHCrossRefGoogle Scholar
  18. Strelets, M.: Detached eddy simulation of massively separated flows. AIAA 2001-0879 (2001)Google Scholar
  19. Travin, A., et al.: Detached-eddy simulations past a circular cylinder. Flow, Turbulence and Combustion 63, 293–313 (1999)CrossRefGoogle Scholar
  20. Turrell, M.D., Stopford P.J., Syed, K.J., Buchanan, E.: CFD simulation of the flow within and downstream of a high-swirl lean premixed gas turbine combustor, ASME GT2004-53112 (2004) Google Scholar
  21. Voke, P.R.: Subgrid-scale modelling at low mesh Reynolds number. Theor. Comput. Fluid. Dyn. 8, 131–143 (1996)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. C. Benim
    • 1
  • M. P. Escudier
    • 2
  • A. Nahavandi
    • 1
  • K. Nickson
    • 2
  • K. J. Syed
    • 3
  1. 1.Duesseldorf University of Applied SciencesGermany
  2. 2.University of LiverpoolUK
  3. 3.Siemens Industrial Turbomachinery Ltd.UK

Personalised recommendations