Advertisement

Numerical Investigation of a Laboratory Combustor Applying Hybrid RANS-LES Methods

  • A. Widenhorn
  • B. Noll
  • M. Stöhr
  • M. Aigner
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 97)

Abstract

In this paper the three-dimensional non-reacting turbulent flow field of a swirl-stabilized gas turbine model combustor is analysed with compressible CFD. For the flow analysis URANS and Hybrid RANS/LES (DES, SAS) turbulence models were applied. The governing equations and the numerical method are described. The simulations were performed using the commercial CFD software package ANSYS CFX-10.0. The numerically achieved velocity components show a good agreement with the experimental values obtained by Particle Image Velocimetry (PIV). Furthermore, a precessing vortex core (PVC) could be found in the combustion chamber.

Keywords

Particle Image Velocimetry Combustion Chamber Large Eddy Simulation Shear Stress Transport Detach Eddy Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Giezendanner, R., et al.: Periodic Combustion Instabilities in a Swirl Burner Studied by Phase-Locked Planar Laser-Induced Fluorescence. Combust. Sci. Technol. 175, 721–741 (2003)CrossRefGoogle Scholar
  2. Liang, H., Maxworthy, T.: An Experimental Investigation of Swirling Jets. J. Fluid Mech. 525, 115–159 (2005)zbMATHCrossRefGoogle Scholar
  3. Menter, F.R.: Two Equation Eddy Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32(8), 269–289 (1995)Google Scholar
  4. Menter, F.R., Egorov, Y.: A Scale-Adaptive Simulation Model Using Two-Equation Models. AIAA-Paper, 2005-1095 (2005)Google Scholar
  5. Menter, F.R., Kuntz, M., Bender, R.: A Scale Adaptive Simulation Model for Turbulent Flow Prediction. AIAA Paper, 2003-0767 (2003)Google Scholar
  6. Noll, B., Schütz, H., Aigner, M.: Numerical Simulation of High Frequency Flow Instabilities Near an Airblast Atomizer, ASME Turbo Expo, GT2001-0041 (2001)Google Scholar
  7. Schlüter, J., et al.: Characterization of Confined Swirl Flows Using Large Eddy Simulation, ASME Turbo Expo, GT2001-0060 (2001)Google Scholar
  8. Spalart, P.R.: Strategies for Turbulence Modelling and Simulations. Int. J. Heat Fluid Flows 21, 252–263 (2000)CrossRefGoogle Scholar
  9. Strelets, M.: Detached Eddy Simulation of Massively Separated Flows. AIAA Paper, 2001-0879 (2001)Google Scholar
  10. Widenhorn, A., Noll, B., Aigner, M.: Accurate Boundary Conditions for the Numerical Simulation of Thermoacoustic Phenomena in Gas-Turbine Combustion Chambers, ASME Turbo Expo, GT2006-90441 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. Widenhorn
    • 1
  • B. Noll
    • 1
  • M. Stöhr
    • 1
  • M. Aigner
    • 1
  1. 1.German Aerospace Centre (DLR)Institute of Combustion TechnologyGermany

Personalised recommendations