Advertisement

One-Equation RG Hybrid RANS/LES Modelling

  • C. De Langhe
  • J. Bigda
  • K. Lodefier
  • E. Dick
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 97)

Abstract

A one-equation variant of a previously developed two-equation, renormalization group (RG) based, hybrid RANS/LES model is presented. The model has a transport equation for the mean dissipation rate and an algebraically prescribed length scale. The length scale is proportional to the wall distance in RANS regions of the flow and to the filter width in LES regions. A near-wall formulation is used in the manner of Yakhot and Orszag’s RNG modelling. The only free parameter entering the low-Reynolds formulation has been calibrated against channel flow, and the value corresponds well with experimental values for the same parameter obtained for decaying homogeneous isotropic turbulence. Applications to an impinging jet and a plane asymmetric diffuser are presented.

Keywords

Renormalization Group Turbulent Kinetic Energy Filter Width Shear Stress Profile Dynamic Smagorinsky Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baughn, J.W., Shimizu, S.: Heat transfer measurements from a surface with uniform heat flux and an impinging jet. Journal of Heat Transfer 111, 1096–1098 (1989)CrossRefGoogle Scholar
  2. Baughn, J.W., Hechanova, A., Yan, X.: An experimental study of entrainment effects on the heat transfer from a flat surface to a heated circular impinging jet. Journal of Heat Transfer 113(4), 1023–1025 (1991)CrossRefGoogle Scholar
  3. Behnia, M., et al.: Numerical study of turbulent heat transfer in confined and unconfined impinging jets. International Journal of Heat and Fluid Flow 20(1), 1–9 (1999)CrossRefGoogle Scholar
  4. Buice, C.U., Eaton, J.K.: Experimental investigation of flow through an asymmetric plane diffuser. J. Fluids Eng. 122(2), 433–435 (2000)CrossRefGoogle Scholar
  5. Colucci, D.W., Viskanta, R.: Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Exp. Therm. Fluid. Science 13, 71–80 (1996)CrossRefGoogle Scholar
  6. De Langhe, C., Merci, B., Dick, E.: Hybrid RANS/LES modelling with an approximate renormalization group. I. Model development. Journal of Turbulence 6(13) (2005a)Google Scholar
  7. De Langhe, C., et al.: Hybrid RANS/LES modelling with an approximate renormalization group. II. Applications. Journal of Turbulence 6(14) (2005b)Google Scholar
  8. Giles, M.J.: Turbulence renormalization group calculations using statistical mechanics methods. Phys. Fluids 6(2), 595–604 (1994a)zbMATHCrossRefMathSciNetGoogle Scholar
  9. Giles, M.J.: Statistical mechanics renormalization group calculations for inhomogeneous turbulence. Phys. Fluids 6(11), 3750–3764 (1994b)zbMATHCrossRefMathSciNetGoogle Scholar
  10. Hadziabdić, M.: LES, RANS and Combined Simulation of Impinging Flows and Heat Transfer. PhD Thesis Technical University Delft (2006)Google Scholar
  11. Kaltenbach, H.J., et al.: Study of flow in a planar asymmetric diffuser using large-eddy simulation. J. Fluid Mechs. 390, 151–185 (1999)zbMATHCrossRefGoogle Scholar
  12. Nikitin, N.V., et al.: An approach to wall modelling in large-eddy simulations. Phys. Fluids 12(7), 1629–1632 (2000)CrossRefGoogle Scholar
  13. Obi, S., Aoki, K., Masuda, S.: Experimental and computational study of turbulent separating flow in an asymmetric plane diffuser. In: Proceedings 9th Symposium on Turbulent Shear Flows, Kyoto, Japan, pp. 305–1–305–4 (1993)Google Scholar
  14. Spalart, P.R., et al.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics 20(3), 181–195 (2006)zbMATHCrossRefGoogle Scholar
  15. Yakhot, V., Orszag, S.A.: Renormalization group analysis of turbulence. J. Sci. Comput. 1, 3–51 (1986)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • C. De Langhe
    • 1
  • J. Bigda
    • 2
  • K. Lodefier
    • 1
  • E. Dick
    • 1
  1. 1.Ghent UniversityBelgium
  2. 2.Silesian University of TechnologyPoland

Personalised recommendations