Skip to main content

Abstract

Integration of fundamental research, elucidating cell differentiation of synthetically designed trigger-inducible promoters and of viral transduction technology, is the basis of tissue engineering for regenerative medicine [29]. Fundamental research has revealed numerous factors that play a role in targeted cell differentiation, such as bone morphogenetic proteins, BMPs [37], angiogenesis-related factors (VEGF, angiopoietin [71]) or cell-cycle regulators (cyclindependent kinase inhibitors [10]). These proteins can be introduced efficiently and safely into various cell types through the development of viral vectors, which are most commonly derived from adeno- and retroviruses [74]. However, as in small-moleculebased medicine, the dose of the therapeutic agent (i.e., the transgene) differentiates a poison from a remedy (Paracelsus, 1493–1541), thereby necessitating genetic tools for adjustment of the transgene expression levels into the therapeutic window. To achieve this, a variety of adjustable expression systems have been designed and have proven essential in almost all fields of mammalian cell technology including functional genomics [23], gene therapy [74], tissue engineering [73], drug discovery [2, 88], synthetic biology [32, 36] as well as the manufacturing of protein therapeutics [6, 13]. This chapter provides an overview of current inducible expression systems with a special focus on systems suitable for tissue engineering applications. Together with an overview of currently used viral vectors this chapter explains how the discovered proteins can be applied in gene-based tissue engineering for regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abruzzese RV, Godin D, Mehta V et al. (2000) Ligand-dependent regulation of vascular endothelial growth factor and erythropoietin expression by a plasmid-based autoinducible GeneSwitch system. Mol Ther 2:276–287

    Article  PubMed  CAS  Google Scholar 

  2. Aubel D, Morris R, Lennon B et al. (2001) Design of a novel mammalian screening system for the detection of bioavailable, non-cytotoxic streptogramin antibiotics. J Antibiot (Tokyo) 54:44–55

    CAS  Google Scholar 

  3. Bellefroid EJ, Poncelet DA, Lecocq PJ et al. (1991) The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc Natl Acad Sci U S A 88:3608–3612

    Article  PubMed  CAS  Google Scholar 

  4. Bhat RA, Stauffer B, Komm BS et al. (2004) Regulated expression of sFRP-1 protein by the GeneSwitch system. Protein Expr Purif 37:327–335

    Article  PubMed  CAS  Google Scholar 

  5. Bockamp E, Christel C, Hameyer D et al. (2007) Generation and characterization of tTS-H4:a novel transcriptional repressor that is compatible with the reverse tetracycline-controlled TET-ON system. J Gene Med 9:308–318

    Article  PubMed  CAS  Google Scholar 

  6. Boorsma M, Nieba L, Koller D et al. (2000) A temperature-regulated replicon-based DNA expression system. Nat Biotechnol 18:429–432

    Article  PubMed  CAS  Google Scholar 

  7. Braselmann S, Graninger P, Busslinger M (1993) A selective transcriptional induction system for mammalian cells based on Gal4-estrogen receptor fusion proteins. Proc Natl Acad Sci U S A 90:1657–1661

    Article  PubMed  CAS  Google Scholar 

  8. Brocard J, Feil R, Chambon P et al. (1998) A chimeric Cre recombinase inducible by synthetic,but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res 26:4086–4090

    Article  PubMed  CAS  Google Scholar 

  9. Fussenegger M (2001) The impact of mammalian gene regulation concepts on functional genomic research, metabolic engineering, and advanced gene therapies. Biotechnol Prog 17:1–51

    Article  PubMed  CAS  Google Scholar 

  10. Fussenegger M, Bailey JE (1998) Molecular regulation of cell-cycle progression and apoptosis in mammalian cells:implications for biotechnology. Biotechnol Prog 14:807–833

    Article  PubMed  CAS  Google Scholar 

  11. Fussenegger M, Mazur X, Bailey JE (1998) pTRIDENT, a novel vector family for tricistronic gene expression in mammalian cells. Biotechnol Bioeng 57:1–10

    Article  PubMed  CAS  Google Scholar 

  12. Fussenegger M, Moser S, Mazur X et al. (1997) Autoregulated multicistronic expression vectors provide one-step cloning of regulated product gene expression in mammalian cells. Biotechnol Prog 13:733–740

    Article  PubMed  CAS  Google Scholar 

  13. Fussenegger M, Schlatter S, Datwyler D et al. (1998) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat Biotechnol 16:468–472

    Article  PubMed  CAS  Google Scholar 

  14. Fussenegger M, Morris RP, Fux C et al. (2000) Streptogramin-based gene regulation systems for mammalian cells. Nat Biotechnol 18:1203–1208

    Article  PubMed  CAS  Google Scholar 

  15. Fux C, Fussenegger M (2003) Toward higher order control modalities in mammalian cells-independent adjustment of two different gene activities. Biotechnol Prog 19:109–120

    Article  PubMed  CAS  Google Scholar 

  16. Fux C, Langer D, Fussenegger M (2004) Dual-regulated myoD- and msx1-based interventions in C2C12-derived cells enable precise myogenic/osteogenic/adipogenic lineage control. J Gene Med 6:1159–1169

    Article  PubMed  CAS  Google Scholar 

  17. Fux C, Mitta B, Kramer BP et al. (2004) Dual-regulated expression of C/EBP-alpha and BMP-2 enables differential differentiation of C2C12 cells into adipocytes and osteoblasts. Nucleic Acids Res 32:e1

    Article  PubMed  Google Scholar 

  18. Fux C, Moser S, Schlatter S et al. (2001) Streptogramin- and tetracycline-responsive dual regulated expression of p27(Kip1) sense and antisense enables positive and negative growth control of Chinese hamster ovary cells. Nucleic Acids Res 29:E19

    Article  PubMed  CAS  Google Scholar 

  19. Gafni Y, Pelled G, Zilberman Y et al. (2004) Gene therapy platform for bone regeneration using an exogenously regulated, AAV-2-based gene expression system. Mol Ther 9:587–595

    Article  PubMed  CAS  Google Scholar 

  20. Gersbach CA, Le Doux JM, Guldberg RE et al. (2006) Inducible regulation of Runx2-stimulated osteogenesis. Gene Ther 13:873–882

    PubMed  CAS  Google Scholar 

  21. Gonzalez-Nicolini V, Fussenegger M (2005) A novel binary adenovirus-based dual-regulated expression system for independent transcription control of two different transgenes. J Gene Med 7:1573–1585

    Article  PubMed  CAS  Google Scholar 

  22. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  23. Gossen M, Bujard H (2002) Studying gene function in eukaryotes by conditional gene inactivation. Annu Rev Genet 36:153–173

    Article  PubMed  CAS  Google Scholar 

  24. Gossen M, Freundlieb S, Bender G et al. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    Article  PubMed  CAS  Google Scholar 

  25. Guido NJ, Wang X, Adalsteinsson D et al. (2006) A bottom-up approach to gene regulation. Nature 439:856–860

    Article  PubMed  CAS  Google Scholar 

  26. Haberman RP, McCown TJ (2002) Regulation of gene expression in adeno-associated virus vectors in the brain. Methods 28:219–226

    Article  PubMed  CAS  Google Scholar 

  27. Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420:224–230

    Article  PubMed  CAS  Google Scholar 

  28. Hunter NL, Awatramani RB, Farley FW et al. (2005) Ligand-activated Flpe for temporally regulated gene modifications. Genesis 41:99–109

    Article  PubMed  CAS  Google Scholar 

  29. Kelm JM, Kramer BP, Gonzalez-Nicolini V et al. (2004) Synergies of microtissue design, viral transduction and adjustable transgene expression for regenerative medicine. Biotechnol Appl Biochem 39:3–16

    Article  PubMed  CAS  Google Scholar 

  30. Kobayashi H, Kaern M, Araki M et al. (2004) Programmable cells:interfacing natural and engineered gene networks. Proc Natl Acad Sci U S A 101:8414–8419

    Article  PubMed  CAS  Google Scholar 

  31. Kobinger GP, Deng S, Louboutin JP et al. (2005) Pharmacologically regulated regeneration of functional human pancreatic islets. Mol Ther 11:105–111

    Article  PubMed  CAS  Google Scholar 

  32. Kramer BP, Fussenegger M (2005) Hysteresis in a synthetic mammalian gene network. Proc Natl Acad Sci U S A 102:9517–9522

    Article  PubMed  CAS  Google Scholar 

  33. Kramer BP, Weber W, Fussenegger M (2003) Artificial regulatory networks and cascades for discrete multilevel transgene control in mammalian cells. Biotechnol Bioeng 83:810–820

    Article  PubMed  CAS  Google Scholar 

  34. Kramer BP, Fischer C, Fussenegger M (2004) BioLogic gates enable logical transcription control in mammalian cells. Biotechnol Bioeng 87:478–484

    Article  PubMed  CAS  Google Scholar 

  35. Kramer BP, Fischer M, Fussenegger M (2005) Semi-synthetic mammalian gene regulatory networks. Metab Eng 7:241–250

    Article  PubMed  CAS  Google Scholar 

  36. Kramer BP, Viretta AU, Daoud-El-Baba M et al. (2004) An engineered epigenetic transgene switch in mammalian cells. Nat Biotechnol 22:867–870

    Article  PubMed  CAS  Google Scholar 

  37. Leboy PS (2006) Regulating bone growth and development with bone morphogenetic proteins. Ann N Y Acad Sci 1068:14–18

    Article  PubMed  CAS  Google Scholar 

  38. Malphettes L, Fussenegger M (2004) Macrolide- and tetracycline-adjustable siRNA-mediated gene silencing in mammalian cells using polymerase II-dependent promoter derivatives. Biotechnol Bioeng 88:417–425

    Article  PubMed  CAS  Google Scholar 

  39. Markusic D, Oude-Elferink R, Das AT et al. (2005) Comparison of single regulated lentiviral vectors with rtTA expression driven by an autoregulatory loop or a constitutive promoter. Nucleic Acids Res 33:e63

    Article  PubMed  Google Scholar 

  40. Mazur X, Eppenberger HM, Bailey JE et al. (1999) A novel autoregulated proliferation-controlled production process using recombinant CHO cells. Biotechnol Bioeng 65:144–150

    Article  PubMed  CAS  Google Scholar 

  41. Milo-Landesman D, Surana M, Berkovich I et al. (2001) Correction of hyperglycemia in diabetic mice transplanted with reversibly immortalized pancreatic beta cells controlled by the tet-on regulatory system. Cell Transplant 10:645–650

    PubMed  CAS  Google Scholar 

  42. Mitta B, Weber CC, Fussenegger M (2005) In vivo transduction of HIV-1-derived lentiviral particles engineered for macrolide-adjustable transgene expression. J Gene Med 7:1400–1408

    Article  PubMed  CAS  Google Scholar 

  43. Mitta B, Weber CC, Rimann M et al. (2004) Design and in vivo characterization of self-inactivating human and non-human lentiviral expression vectors engineered for streptogramin-adjustable transgene expression. Nucleic Acids Res 32:e106

    Article  PubMed  Google Scholar 

  44. Miyazaki S, Yamato E, Miyazaki J (2004) Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53:1030–1037

    Article  PubMed  CAS  Google Scholar 

  45. Mohan RR, Possin DE, Mohan RR et al. (2003) Development of genetically engineered tet HPV16-E6/E7 transduced human corneal epithelial clones having tight regulation of proliferation and normal differentiation. Exp Eye Res 77:395–407

    Article  PubMed  CAS  Google Scholar 

  46. Moser S, Rimann M, Fux C et al. (2001) Dual-regulated expression technology:a new era in the adjustment of heterologous gene expression in mammalian cells. J Gene Med 3:529–549

    Article  PubMed  CAS  Google Scholar 

  47. Mullick A, Xu Y, Warren R et al. (2006) The cumate gene-switch:a system for regulated expression in mammalian cells. BMC Biotechnol 6:43

    Article  PubMed  Google Scholar 

  48. Murphy GJ, Mostoslavsky G, Kotton DN et al. (2006) Exogenous control of mammalian gene expression via modulation of translational termination. Nat Med 12:1093–1099

    Article  PubMed  CAS  Google Scholar 

  49. Neff T, Horn PA, Valli VE et al. (2002) Pharmacologically regulated in vivo selection in a large animal. Blood 100:2026–2031

    Article  PubMed  CAS  Google Scholar 

  50. Noel D, Gazit D, Bouquet C et al. (2004) Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 22:74–85

    Article  PubMed  CAS  Google Scholar 

  51. Pollett JB, Zhu YX, Gandhi S et al. (2003) RU486-inducible retrovirus-mediated caspase-3 overexpression is cytotoxic to bcl-xL-expressing myeloma cells in vitro and in vivo. Mol Ther 8:230–237

    Article  PubMed  CAS  Google Scholar 

  52. Pollock R, Giel M, Linher K et al. (2002) Regulation of endogenous gene expression with a small-molecule dimerizer. Nat Biotechnol 20:729–733

    Article  PubMed  CAS  Google Scholar 

  53. Pollock R, Issner R, Zoller K et al. (2000) Delivery of a stringent dimerizer-regulated gene expression system in a single retroviral vector. Proc Natl Acad Sci U S A 97:13221–13226

    Article  PubMed  CAS  Google Scholar 

  54. Regulier E, Pereira de Almeida L, Sommer B et al. (2002) Dose-dependent neuroprotective effect of ciliary neurotrophic factor delivered via tetracycline-regulated lentiviral vectors in the quinolinic acid rat model of Huntington’s disease. Hum Gene Ther 13:1981–1990

    Article  PubMed  CAS  Google Scholar 

  55. Regulier E, Trottier Y, Perrin V et al. (2003) Early and reversible neuropathology induced by tetracycline-regulated lentiviral overexpression of mutant huntingtin in rat striatum. Hum Mol Genet 12:2827–2836

    Article  PubMed  CAS  Google Scholar 

  56. Rivera VM, Clackson T, Natesan S et al. (1996) A humanized system for pharmacologic control of gene expression. Nat Med 2:1028–1032

    Article  PubMed  CAS  Google Scholar 

  57. Rivera VM, Wang X, Wardwell S et al. (2000) Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum. Science 287:826–830

    Article  PubMed  CAS  Google Scholar 

  58. Rossi F, Charlton CA, Blau HM (1997) Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc Natl Acad Sci U S A 94:8405–8410

    Article  PubMed  CAS  Google Scholar 

  59. Roth S, Stein D, Nusslein-Volhard C (1989) A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59:1189–1202

    Article  PubMed  CAS  Google Scholar 

  60. Sirin O, Park F (2003) Regulating gene expression using self-inactivating lentiviral vectors containing the mifepristone-inducible system. Gene 323:67–77

    Article  PubMed  CAS  Google Scholar 

  61. Szulc J, Wiznerowicz M, Sauvain MO et al. (2006) A versatile tool for conditional gene expression and knockdown. Nat Methods 3:109–116

    Article  PubMed  CAS  Google Scholar 

  62. Takahashi K, Saishin Y, Saishin Y et al. (2003) Intraocular expression of endostatin reduces VEGF-induced retinal vascular permeability, neovascularization, and retinal detachment. Faseb J 17:896–898

    PubMed  CAS  Google Scholar 

  63. Tang YL, Tang Y, Zhang YC et al. (2005) A hypoxia-inducible vigilant vector system for activating therapeutic genes in ischemia. Gene Ther 12:1163–1170

    Article  PubMed  CAS  Google Scholar 

  64. Triezenberg SJ, Kingsbury RC, McKnight SL (1988) Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev 2:718–729

    Article  PubMed  CAS  Google Scholar 

  65. Unsinger J, Kroger A, Hauser H et al. (2001) Retroviral vectors for the transduction of autoregulated, bidirectional expression cassettes. Mol Ther 4:484–489

    Article  PubMed  CAS  Google Scholar 

  66. Urlinger S, Baron U, Thellmann M et al. (2000) Exploring the sequence space for tetracycline-dependent transcriptional activators:novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A 97:7963–7968

    Article  PubMed  CAS  Google Scholar 

  67. Vogel R, Amar L, Thi AD et al. (2004) A single lentivirus vector mediates doxycycline-regulated expression of transgenes in the brain. Hum Gene Ther 15:157–165

    Article  PubMed  CAS  Google Scholar 

  68. Wang J, Voutetakis A, Zheng C et al. (2004) Rapamycin control of exocrine protein levels in saliva after adenoviral vector-mediated gene transfer. Gene Ther 11:729–733

    Article  PubMed  CAS  Google Scholar 

  69. Wang J, Voutetakis A, Papa M et al. (2006) Rapamycin control of transgene expression from a single AAV vector in mouse salivary glands. Gene Ther 13:187–190

    Article  PubMed  Google Scholar 

  70. Wang Y, O’Malley BW, Jr., Tsai SY et al. (1994) A regulatory system for use in gene transfer. Proc Natl Acad Sci U S A 91:8180–8184

    Article  Google Scholar 

  71. Weber CC, Cai H, Ehrbar M et al. (2005) Effects of protein and gene transfer of the angiopoietin-1 fibrinogen-like receptor-binding domain on endothelial and vessel organization. J Biol Chem 280:22445–22453

    Article  PubMed  CAS  Google Scholar 

  72. Weber W, Fussenegger M (2002) Artificial mammalian gene regulation networks-novel approaches for gene therapy and bioengineering. J Biotechnol 98:161–187

    Article  PubMed  CAS  Google Scholar 

  73. Weber W, Fussenegger M (2004) Approaches for trigger-inducible viral transgene regulation in gene-based tissue engineering. Curr Opin Biotechnol 15:383–391

    Article  PubMed  CAS  Google Scholar 

  74. Weber W, Fussenegger M (2006) Pharmacologic transgene control systems for gene therapy. J Gene Med 8:535–556

    Article  PubMed  CAS  Google Scholar 

  75. Weber W, Daoud El-Baba M, Fussenegger M (2007) Synthetic ecosystems based on airborne inter- and intra-kingdom communication. Proc Natl Acad Sci U S A:In press

    Google Scholar 

  76. Weber W, Kramer BP, Fussenegger M (2007) A genetic time delay circuitry in mammalian cells. Biotechnol Bioeng: in press.

    Google Scholar 

  77. Weber W, Bacchus W, Gruber F et al. (2007) A novel vector platform for vitamin H-inducible transgene expression in mammalian cells. Submitted for publication

    Google Scholar 

  78. Weber W, Marty RR, Keller B et al. (2002) Versatile macrolide-responsive mammalian expression vectors for multiregulated multigene metabolic engineering. Biotechnol Bioeng 80:691–705

    Article  PubMed  CAS  Google Scholar 

  79. Weber W, Rimann M, Spielmann M et al. (2004) Gas-inducible transgene expression in mammalian cells and mice. Nat Biotechnol 22:1440–1444

    Article  PubMed  CAS  Google Scholar 

  80. Weber W, Stelling J, Rimann M et al. (2007) A synthetic time-delay circuit in mammalian cells and mice. Proc Natl Acad Sci U S A 104:2643–2648

    Article  PubMed  CAS  Google Scholar 

  81. Weber W, Fux C, Daoud-el Baba M et al. (2002) Macrolide-based transgene control in mammalian cells and mice. Nat Biotechnol 20:901–907

    Article  PubMed  CAS  Google Scholar 

  82. Weber W, Malphettes L, de Jesus M et al. (2005) Engineered Streptomyces quorum-sensing components enable inducible siRNA-mediated translation control in mammalian cells and adjustable transcription control in mice. J Gene Med 7:518–525

    Article  PubMed  CAS  Google Scholar 

  83. Weber W, Schoenmakers R, Spielmann M et al. (2003) Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice. Nucleic Acids Res 31:e71

    Article  PubMed  Google Scholar 

  84. Yao F, Svensjo T, Winkler T et al. (1998) Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum Gene Ther 9:1939–1950

    Article  PubMed  CAS  Google Scholar 

  85. Yen L, Magnier M, Weissleder R et al. (2006) Identification of inhibitors of ribozyme self-cleavage in mammalian cells via high-throughput screening of chemical libraries. Rna 12:797–806

    Article  PubMed  CAS  Google Scholar 

  86. Yen L, Svendsen J, Lee JS et al. (2004) Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431:471–476

    Article  PubMed  CAS  Google Scholar 

  87. Zhao HF, Boyd J, Jolicoeur N et al. (2003) A coumermycin/novobiocin-regulated gene expression system. Hum Gene Ther 14:1619–1629

    Article  PubMed  CAS  Google Scholar 

  88. Zhao HF, Kiyota T, Chowdhury S et al. (2004) A mammalian genetic system to screen for small molecules capable of disrupting protein-protein interactions. Anal Chem 76:2922–2927

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weber, W., Fussenegger, M. (2009). Towards Genetically Designed Tissues for Regenerative Medicine. In: Meyer, U., Handschel, J., Wiesmann, H., Meyer, T. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77755-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77755-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77754-0

  • Online ISBN: 978-3-540-77755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics