Skip to main content

Cytokine Signaling in Tissue Engineering

  • Chapter
  • 4625 Accesses

Abstract

Signal transduction is based on the need of different cells to communicate with each other in order to coordinate their growth and differentiation. The mechanisms for such complex regulation include secretion of soluble signaling molecules, as well as direct contacts between cells. Signal transduction pathways usually converge in the nucleus where transcription factors execute distinct gene expression programs. Many, though not all transcription factors bind to a specific base sequence in the promoter region of genes. Signal transducer and activator of transcription (STAT) proteins constitute a family of cytokineinducible transcription factors that modulate broadly diverse biological processes, including cell growth, differentiation, apoptosis, immune regulation, fetal development, and transformation. They were originally discovered as DNA-binding proteins mediating interferon signal transduction. STAT proteins transmit cytokine signals directly from the plasma membrane to the nucleus without the interplay of a second messenger. In response to extracellular ligands receptor-associated Janus kinases (JAKs) activate STATs by phosphorylation on a single tyrosine at the carboxy terminus of the molecule. Activated STAT molecules form dimers through reciprocal interactions between the SH2 domain of one monomer and the phosphorylated tyrosine residue of the other. In the nucleus they bind to sequence-specific DNA elements and modulate the expression of a broad range of target genes. Recently, it was shown that STAT proteins shuttle between the cytoplasm and nucleus both in the presence and absence of cytokine stimulation. In this review we summarize the principles of the JAK-STAT signaling circuit and briefly discuss putative pharmacological interventions thereof used in tissue engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calò V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N, Russo A. STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol 2003;197:157-68

    Article  PubMed  CAS  Google Scholar 

  2. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem 1998;67:227-64

    Article  PubMed  CAS  Google Scholar 

  3. Ihle JN. The Stat family in cytokine signaling. Curr Opin Cell Biol 2001;13:211-17

    Article  PubMed  CAS  Google Scholar 

  4. Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002;3:651-62

    Article  PubMed  CAS  Google Scholar 

  5. Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003;3:900-11

    Article  PubMed  CAS  Google Scholar 

  6. Rane SG, Reddy EP. Janus kinases: components of multiple signaling pathways. Oncogene 2000;19:5662-79

    Article  PubMed  CAS  Google Scholar 

  7. Velazquez L, Fellous M, Stark GR, Pellegrini S. A protein tyrosine kinase in the interferon α/β signalling pathway. Cell 1992;70:313-22

    Article  PubMed  CAS  Google Scholar 

  8. Müller M, Briscoe J, Laxton C, Guschin D, Ziemiecki A, Silvennoinen O, Harpur AG, Barbieri G, Witthuhn BA, Schindler C, Pellegrini S, Wilks AF, Ihle JN, Stark GR, Kerr IM. The protein tyrosine kinase JAK1 complements defects in interferon-α/β and –?γ signal transduction. Nature 1993;366:129-35

    Article  PubMed  Google Scholar 

  9. Watling D, Gushin D, Müller M, Silvennoinen O, Witthuhn BA, Quelle FW, Rogers NC, Schindler C, Stark GR, Ihle JN, Kerr IM. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in interferon-gamma signal transduction. Nature 1993;366:166-70

    Article  PubMed  CAS  Google Scholar 

  10. Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, King KL, Sheehan KC, Yin L, Pennica D, Johnson EM Jr, Schreiber RD. Disruption of the jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998;93:373-83

    Article  PubMed  CAS  Google Scholar 

  11. Neubauer H, Cumano A, Müller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998;93:397-409

    Article  PubMed  CAS  Google Scholar 

  12. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, Grosveld G, Ihle JN. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998;93:385-95

    Article  PubMed  CAS  Google Scholar 

  13. Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP, Doherty PC, Grosveld GC, Ihle JN. Defective lymphoid development in mice lacking Jak3. Science 1995;270:800-2

    Article  PubMed  CAS  Google Scholar 

  14. Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N, Miyake K, Nakauchi H, Shirasawa T, Saito T. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 1995;3:771-82

    Article  PubMed  CAS  Google Scholar 

  15. Grossman WJ, Verbsky JW, Yang L, Berg LJ, Fields LE, Chaplin DD, Ratner L. Dysregulated myelopoiesis in mice lacking Jak3. Blood 1999;94:932-9

    PubMed  CAS  Google Scholar 

  16. Park C, Li S, Cha E, Schindler C. Immune response in Stat2 knockout mice. Immunity 2000;13:795-804

    Article  PubMed  CAS  Google Scholar 

  17. Bromberg JF. Activation of STAT proteins and growth control. BioEssays 2001;23:161-9

    Article  PubMed  CAS  Google Scholar 

  18. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 1997;94:3801-4

    Article  PubMed  CAS  Google Scholar 

  19. Takeda K, Kaisho T, Yoshida N, Takeda J, Kishimoto T, Akira S. Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J Immunol 1998;161:4652-60

    PubMed  CAS  Google Scholar 

  20. Kaplan MH, Sun YL, Hoey T, Grusby MJ. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 1996;382:174-7

    Article  PubMed  CAS  Google Scholar 

  21. Thierfelder WE, van Deursen JM, Yamamoto K, Tripp RA, Sarawar SR, Carson RT, Sangster MY, Vignali DA, Doherty PC, Grosveld GC, Ihle JN. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 1996;382:171-4

    Article  PubMed  CAS  Google Scholar 

  22. Wakao H, Gouilleux F, Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J 1994;13:2182-91

    PubMed  CAS  Google Scholar 

  23. Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci USA 1995;92:8831-5

    Article  PubMed  CAS  Google Scholar 

  24. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Henninghausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 1997;11:179-86

    Article  PubMed  CAS  Google Scholar 

  25. Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 1998;93:841-50,

    Article  Google Scholar 

  26. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW. Requirement of STAT5b for sexual dimorphism of body rates and liver gene expression. Proc Natl Acad Sci USA 1997;94:7239-44

    Article  PubMed  CAS  Google Scholar 

  27. Moriggl R, Sexl V, Piekorz R, Topham D, Ihle JN. Stat5 activation is uniquely associated with cytokine signaling in peripheral T cells. Immunity 1999;11:225-30

    Article  PubMed  CAS  Google Scholar 

  28. Moriggl R, Topham DJ, Teglund S, Sexl V, McKay C, Wang D, Hoffmeyer A, van Deursen J, Sangster MY, Bunting KD, Grosveld GC, Ihle JN. Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity 1999;10:249-59

    Article  PubMed  CAS  Google Scholar 

  29. Hou J, Schindler U, Henzel WJ, Ho TC, Brasseur M, McKnight SL. An interleukin-4-induced transcription factor: IL-4 Stat. Science 1994;265:1701-6

    Article  PubMed  CAS  Google Scholar 

  30. Takeda K, Kamanaka M, Tanaka T, Kishimoto T, Akira S. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice. J Immunol 1996;157:3320-2

    Google Scholar 

  31. Kaplan MH, Schindler U, Smiley ST, Grusby MJ. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 1996;4:313-9

    Article  PubMed  CAS  Google Scholar 

  32. Shimoda K, van Deursen J, Sangster MY, Sarawar SR, Carson RT, Tripp RA, Chu C, Quelle FW, Nosaka T, Vignali DA, Doherty PC, Grosveld G, Paul WE, Ihle JN. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 1996;380:630-3

    Article  PubMed  CAS  Google Scholar 

  33. Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA, Wang W, McMurray JS, Demeler B, Darnell JE Jr, Chen X. Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell 2005;17:761-71

    Article  PubMed  CAS  Google Scholar 

  34. Shuai K, Liao J, Song MM. Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of Stat1. Mol Cell Biol 1996;16:4932-41

    PubMed  CAS  Google Scholar 

  35. Vinkemeier U, Cohen SL, Moarefi I, Chait BT, Kuriyan J, Darnell JE Jr. DNA binding of in vitro activated Stat1-alpha, Stat1-beta and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J 1996;15:5616-26

    PubMed  CAS  Google Scholar 

  36. Meyer T, Hendry L, Begitt A, John S, Vinkemeier U. A single residue modulates tyrosine dephosphorylation, oligomerization, and nuclear accumulation of Stat transcription factors. J Biol Chem 2004;279:18998-9007

    Article  PubMed  CAS  Google Scholar 

  37. Horvath CM, Stark GR, Kerr IM, Darnell JE Jr. Interactions between STAT and non-STAT proteins in the interferon-stimulated gene factor 3 transcription complex. Mol Cell Biol 1996;16:6957-64

    PubMed  CAS  Google Scholar 

  38. Horvath CM, Wen Z, Darnell JE Jr. A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 1995;15:984-94

    Article  Google Scholar 

  39. Yang E, Henriksen MA, Schaefer O, Zakharova N, Darnell JE Jr. Dissociation time from DNA determines transcriptional function in a STAT1 linker mutant. J Biol Chem 2002;277:13455-62

    Article  PubMed  CAS  Google Scholar 

  40. Shuai K, Stark GR, Kerr IM, Darnell JE Jr. A single phosphotyrosine residue of Stat91 required for gene activation by interferon-γ. Science 1993;261:1744-6

    Article  PubMed  CAS  Google Scholar 

  41. Schindler C, Shuai K, Prezioso VR, Darnell JE Jr. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 1992;257:809-13

    Article  PubMed  CAS  Google Scholar 

  42. Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell JE Jr. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 1994;76:821-8

    Article  PubMed  CAS  Google Scholar 

  43. Haspel RL, Salditt-Georgieff M, Darnell JE Jr. The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. EMBO J 1996;15:6262-8

    PubMed  CAS  Google Scholar 

  44. ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 2002;22:5662-8

    Article  PubMed  CAS  Google Scholar 

  45. Akira S. Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells 1999;17:138-46

    Article  PubMed  CAS  Google Scholar 

  46. Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP, Jove R. Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol 1998;18:2545-52

    PubMed  CAS  Google Scholar 

  47. Meyer T, Gavenis K, Vinkemeier U. Cell-type specific and tyrosine phosphorylation-independent nuclear presence of STAT1 and STAT3. Exp Cell Res 2002;272:45-55

    Article  PubMed  CAS  Google Scholar 

  48. Meyer T, Begitt A, Lödige I, van Rossum M, Vinkemeier U. Constitutive and IFNγ-induced nuclear import of STAT1 proceed through independent pathways. EMBO J 2002;21:344-54

    Article  PubMed  CAS  Google Scholar 

  49. Zeng R, Aoki Y, Yoshida M, Arai K, Watanabe S. Stat5B shuttles between cytoplasm and nucleus in a cytokine-dependent and -independent manner. J Immunol 2002;168:4567-75

    PubMed  CAS  Google Scholar 

  50. Marg A, Shan Y, Meyer T, Meissner T, Brandenburg M, Vinkemeier U. Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1. J Cell Biol 2004;165:823-33

    Article  PubMed  CAS  Google Scholar 

  51. Pranada AL, Metz S, Herrmann A, Heinrich PC, Müller-Newen G. Real time analysis of STAT3 nucleocytoplasmic shuttling. J Biol Chem 2004;279:15114-23

    Article  PubMed  CAS  Google Scholar 

  52. Mertens C, Zhong M, Krishnaraj R, Zou W, Chen X, Darnell JE Jr. Dephosphorylation of phosphotyrosine on STAT1 dimers requires extensive spatial reorientation of the monomers facilitated by the N-terminal domain. Genes Dev 2006;20:3372-81

    Article  PubMed  CAS  Google Scholar 

  53. Sekimoto T, Nakajima K, Tachibana T, Hirano T, Yoneda Y. Interferon-γ-dependent nuclear import of Stat1 is mediated by the GTPase activity of Ran/TC4. J Biol Chem 1996;271:31017-20

    Article  PubMed  CAS  Google Scholar 

  54. Bischoff FR, Scheffzek K, Ponstingl H. How Ran is regulated. Results Probl Cell Differ 2002;35:49-66

    PubMed  CAS  Google Scholar 

  55. Sekimoto T, Imamoto N, Nakajima K, Hirano T, Yoneda Y. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J 1997;16:7067-77

    Article  PubMed  CAS  Google Scholar 

  56. Fagerlund R, Melén K, Kinnunen L, Julkunen I. Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin α5. J Biol Chem 2002;277;30072-8

    Article  PubMed  CAS  Google Scholar 

  57. McBride KM, Banninger G, McDonald C, Reich NC. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-α. EMBO J 2002;21:1754-63

    Article  PubMed  CAS  Google Scholar 

  58. Melén K, Kinnunen L, Julkunen I. Arginine/lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J Biol Chem 2001;276:16447-55

    Article  PubMed  Google Scholar 

  59. Melén K, Fagerlund R, Franke J, Köhler M, Kinnunen L, Julkunen I. Importin α nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. J Biol Chem 2003;278:28193-200

    Article  PubMed  CAS  Google Scholar 

  60. McBride KM, McDonald C, Reich NC. Nuclear export signal located within the DNA-binding domain of the STAT1 transcription factor. EMBO J 2000;19:6196-206

    Article  PubMed  CAS  Google Scholar 

  61. Andrews RP, Ericksen MB, Cunningham CM, Daines MO, Hershey GK. Analysis of the life cycle of stat6. Continuous cycling of STAT6 is required for IL-4 signaling. J Biol Chem 2002;277:36563-9

    Article  PubMed  CAS  Google Scholar 

  62. Meyer T, Marg A, Lemke P, Wiesner B, Vinkemeier U. DNA binding controls inactivation and nuclear accumulation of the transcription factor Stat1. Genes Dev 2003;17:1992-2005

    Article  PubMed  CAS  Google Scholar 

  63. Look DC, Pelletier MR, Tidwell RM, Roswit WT, Holtzman MJ. Stat1 depends on transcriptional synergy with Sp1. J Biol Chem. 1995;270:30264-7

    Article  PubMed  CAS  Google Scholar 

  64. Stöcklin E, Wissler M, Gouilleux F, Groner B. Functional interactions between Stat5 and the glucocorticoid receptor. Nature 1996;383:726-8

    Article  PubMed  Google Scholar 

  65. Zhang X, Wrzeszczynska MH, Horvath CM, Darnell JE Jr. Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol Cell Biol 1999;19:7138-46

    PubMed  CAS  Google Scholar 

  66. Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE Jr. Two contact regions between Stat1 and CBP/p300 in interferon γ signaling. Proc Natl Acad Sci USA 1996;93:15092-6

    Article  PubMed  CAS  Google Scholar 

  67. Zhang JJ, Zhao Y, Chait BT, Lathem WW, Ritzi M, Knippers R, Darnell JE Jr. Ser727-dependent recruitment of MCM5 by Stat1α in IFN-γ-induced transcriptional activation. EMBO J 1998;17:6963-71

    Article  PubMed  CAS  Google Scholar 

  68. Zhu M, John S, Berg M, Leonard WJ. Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNγ-mediated signaling. Cell 1999;96:121-30

    Article  PubMed  CAS  Google Scholar 

  69. Huang M, Qian F, Hu Y, Ang C, Li Z, Wen Z. Chromatin-remodelling factor BRG1 selectively activates a subset of interferon-α-inducible genes. Nat Cell Biol 2002;4:774-81

    Article  PubMed  CAS  Google Scholar 

  70. Nusinzon I, Horvath CM. Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc Natl Acad Sci USA 2003;100:14742-7

    Article  PubMed  CAS  Google Scholar 

  71. Ni Z, Karaskov E, Yu T, Callaghan SM, Der S, Park DS, Xu Z, Pattenden SG, Bremner R. Apical role for BRG1 in cytokine-induced promoter assembly. Proc Natl Acad Sci USA 2005;102:14611-6

    Article  PubMed  CAS  Google Scholar 

  72. Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997;387:921-4

    Article  PubMed  CAS  Google Scholar 

  73. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, Gonda TJ, Alexander WS, Metcalf D, Nicola NA, Hilton DJ. A family of cytokine-inducible inhibitors of signalling. Nature 1997;387:917-21

    Article  PubMed  CAS  Google Scholar 

  74. Naka T, Fujimoto M, Kishimoto T. Negative regulation of cytokine signaling: STAT-induced STAT inhibitor. Trends Biochem Sci 1999;24:394-8

    Article  PubMed  CAS  Google Scholar 

  75. You M, Yu DH, Feng GS. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated JAK-STAT pathway. Mol Cell Biol 1999;19:2416-24

    PubMed  CAS  Google Scholar 

  76. Aoki N, Matsuda T. A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Mol Endocrionol 2002;16:58-69

    Article  CAS  Google Scholar 

  77. Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ. The T cell protein tyrosine phosphatase is a negative regulator of Janus family kinases 1 and 3. Curr Biol 2002;12:446-53

    Article  PubMed  CAS  Google Scholar 

  78. Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K. Specific inhibition of Stat3 signal transduction by PIAS3. Science 1997;278:1803-5

    Article  PubMed  CAS  Google Scholar 

  79. Shuai K. Modulation of STAT signaling by STAT-interacting proteins. Oncogene 2000;19:2638-44

    Article  PubMed  CAS  Google Scholar 

  80. O´Shea JJ, Pesu M, Borie DC, Changelian PS. A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat Rev Drug Discov 2004;3:555-564

    Article  CAS  Google Scholar 

  81. Rakesh K, Agrawal DK. Controlling cytokine signaling by constitutive inhibitors. Biochem Pharmacol 2005;70:649-57

    Article  PubMed  CAS  Google Scholar 

  82. Changelian PS, Flanagan ME, Ball DJ, Kent CR, Magnuson KS, Martin WH et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 2003;302:875-8

    Article  PubMed  CAS  Google Scholar 

  83. Conklyn M, Andresen C, Changelian P, Kudlacz E. The JAK3 inhibitor CP-690550 selectively reduces NK and CD8+ cell numbers in cynomolgus monkey blood following chronic oral dosing. J Leukoc Biol 2004;76:1248-55

    Article  PubMed  CAS  Google Scholar 

  84. Desrivières S, Kunz C, Barash I, Vafaizadeh V, Borghouts C, Groner B. The biological functions of the versatile transcription factors STAT3 and STAT5 and new strategies for their targeted inhibition. J Mammary Gland Biol Neoplasia 2006;11:75-87

    Article  PubMed  Google Scholar 

  85. Ferrajoli A, Faderl S, Ravandi F, Estrov Z. The JAK-STAT pathway: a therapeutic target in hematological malignancies. Curr Cancer Drug Targets 2006;6:671-9

    Article  PubMed  CAS  Google Scholar 

  86. Kudlacz E, Perry B, Sawyer P, Conklyn M, McCurdy S, Brissette W, Flanagan M, Changelian P. The novel JAK-3 inhibitor CP-690550 is a potent immunosuppressive agent in various murine models. Am J Transplant 2004;4:51-7

    Article  PubMed  CAS  Google Scholar 

  87. Turkson J, Ryan D, Kim JS, Zhang Y, Chen Z, Haura E, Laudano A, Sebti S, Hamilton AD, Jove R. Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J Biol Chem 2001;276:45443-55

    Article  PubMed  CAS  Google Scholar 

  88. Ren Z, Cabell LA, Schaefer TS, McMurray JS. Identification of a high-affinity phosphopeptide inhibitor of Stat3. Bioorg Med Chem Lett 2003;13:633-6

    Article  PubMed  CAS  Google Scholar 

  89. Lui VW, Boehm AL, Koppikar P, Leeman RJ, Johnson D, Ogagan M, Childs E, Freilino M, Grandis JR. Antiproliferative mechanisms of a transcription factor decoy targeting signal transducer and activator of transcription (STAT) 3: the role of STAT1. Mol Phamacol 2007;71:1435-43

    Article  CAS  Google Scholar 

  90. Catalano RD, Johnson MH, Campbell EA, Charnock-Jones DS, Smith SK, Sharkey AM. Inhibition of Stat3 activation in the endometrium prevents implantation: a nonsteroidal approach to contraception. Proc Natl Acad Sci USA 2005;102:8585-90

    Article  PubMed  CAS  Google Scholar 

  91. Turkson J, Kim JS, Zhang S, Yuan J, Huang M, Glenn M, Haura E, Sebti S, Hamilton AD, Jove R. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol Cancer Ther 2004;3:261-9

    PubMed  CAS  Google Scholar 

  92. Quarcoo D, Weixler S, Groneberg D, Joachim R, Ahrens B, Wagner AH, Hecker M, Hamelmann E. Inhibition of signal transducer and activator of transcription 1 attenuates allergen-induced airway inflammation and hyperreactivity. J Allergy Clin Immunol 2004;114:288-95

    Article  PubMed  CAS  Google Scholar 

  93. Xi S, Gooding WE, Grandis JR. In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approch: implication for cancer therapy. Oncogene 2005;24:970-9

    Article  PubMed  CAS  Google Scholar 

  94. Hölschermann H, Stadlbauer TH, Wagner AH, Fingerhuth H, Muth H, Rong S, Güler F, Tillmanns H, Hecker M. STAT-1 and AP-1 decoy oligonucleotide therapy delays acute rejection and prolongs cardiac allograft survival. Cardiovasc Res 2006;71:527-36

    Article  PubMed  CAS  Google Scholar 

  95. Hückel M, Schurigt U, Wagner AH, Stöckigt R, Petrow PK, Thoss K, Gajda M, Henzgen S, Hecker M, Bräuer R. Attenuation of murine antigen-induced arthritis by treatment with a decoy oligonucleotide inhibiting signal transducer and activator of transcription-1 (STAT-1). Arthritis Res Ther 2006;8:R17

    Article  PubMed  CAS  Google Scholar 

  96. Stojanovic T, Scheele L, Wagner AH, Middel P, Bedke J, Lautenschläger I, Leister I, Panzner S, Hecker M. STAT-1 decoy oligonucleotide improves microcirculation and reduces acute rejection in allogeneic rat small bowel transplants. Gene Ther 2007;14:883-90

    Article  PubMed  CAS  Google Scholar 

  97. Song H, Wang R, Wang S, Lin J. A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci USA 2005;102:4700-5

    Article  PubMed  CAS  Google Scholar 

  98. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Yip ML, Jove R, McLaughlin MM, Lawrence NJ, Sebti SM, Turkson J. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA 2007;104:7391-9

    Article  PubMed  CAS  Google Scholar 

  99. Natarajan C, Bright JJ. Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 2002;169:6506-13

    Google Scholar 

  100. Lee YK, Isham CR, Kaufman SH, Bible KC. Flavopiridol disrupts STAT3/DNA interactions, attenuates STAT3-directed transcription, and combines with the Jak kinase inhibitor AG490 to achieve cytotoxic synergy. Mol Cancer Ther 2006;5:138-48

    Article  PubMed  CAS  Google Scholar 

  101. Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara AB, Sung B, Ichikawa H. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann NY Acad Sci 2006;1091:151-69

    Article  PubMed  CAS  Google Scholar 

  102. Lynch RA, Etchin J, Battle TE, Frank DA. A small-molecule enhancer of signal transducer and activator of transcription 1 transcriptional activity accentuates the antiproliferative effects of IFN-γ in human cancer cells. Cancer Res 2007;67:1254-61

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, T., Ruppert, V., Maisch, B. (2009). Cytokine Signaling in Tissue Engineering. In: Meyer, U., Handschel, J., Wiesmann, H., Meyer, T. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77755-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77755-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77754-0

  • Online ISBN: 978-3-540-77755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics