Skip to main content

Abstract

Whereas the properties of a material’s surface directly influence single cell behaviour, the three-dimensional scaffold structure plays a critical role in the orchestration of tissue formation both in vitro and in vivo. Whereas the microstructure of a material refers to the material at the nanoscale or microscale level (mainly used to characterise material surfaces), scaffold architecture defines the structure of the material in space at a tissue-length scale. Scaffolds not only provide the structural basis for cells to form a three-dimensional tissue-like construct in vitro, but they also determine the features of mass transport (diffusion and convection). The scaffold architecture affects both single-cell parameters (e.g. cell viability, cell migration, cell differentiation) and the composition of the generated tissue substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55:141–150

    Article  PubMed  CAS  Google Scholar 

  2. Agrawal CM, Mckinney JS, Huang D, Athanasiou KA (2000) Synthetic bioabsorbable polymers for implants, 1st edn. ASTM, Philadelphia

    Google Scholar 

  3. Ang TH, Sultana FSA, Hutmacher DW, Wong YS, Fuh JYH, Mo XM, Loh HT, Burdet E, Teoh SH (2002) Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Mater Sci Eng C 20(1–2):35–42

    Article  Google Scholar 

  4. Burg KJ, Holder WD Jr, Culberson CR, Beiler RJ, Greene KG, Loebsack AB, Roland WD, Eiselt P, Mooney DJ, Halberstadt CR (2000) Comparative study of seeding methods for three-dimensional polymeric scaffolds. J Biomed Mater Res 51(4):642–649

    Article  PubMed  CAS  Google Scholar 

  5. Chu TM, Halloran JW, Hollister SJ, Feinberg SE (2001) Hydroxyapatite implants with designed internal architecture. J Mater Sci Mater Med 12(6):471-478

    Article  PubMed  CAS  Google Scholar 

  6. Cima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, Langer R (1991) Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 113(2):143–151

    Article  PubMed  CAS  Google Scholar 

  7. Fedchenko F (1996) Stereolithography and other RP&M technologies. ASME Press, Dearborn, p 2

    Google Scholar 

  8. Gomes ME, Salgado AJ, Reis RL (2002b) Polymer based systems on tissue engineering: replacement and regeneration, 1st edn. Kluwer, Dordrecht, p 221

    Google Scholar 

  9. Gomes ME, Ribeiro AS, Malafaya PB, Reis RL, Cunha AM (2001) A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials 22(9):883–889

    Article  PubMed  CAS  Google Scholar 

  10. Gomes ME, Godinho JS, Tchalamov D, Cunha AM, Reis RL (2002a) Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Mater Sci Eng C 20(1–2):19–26

    Article  Google Scholar 

  11. Holy CE, Shoichet MS, Davies JE (2000) Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J Biomed Mater Res 51(3):376–382

    Article  PubMed  CAS  Google Scholar 

  12. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  PubMed  CAS  Google Scholar 

  13. Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym Ed 12:107–124

    Article  PubMed  CAS  Google Scholar 

  14. Hutmacher DW, Kirsch A, Ackermann KL, et al (2001a) A tissue engineered cell-occlusive device for hard tissue regeneration—a preliminary report. Int J Periodontics Restorative Dent 21:49–59

    CAS  Google Scholar 

  15. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001b) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55(2):203–216

    Article  CAS  Google Scholar 

  16. Karp JM, Shoichet MS, Davies JE (2003) Bone formation on two-dimensional poly(dl-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J Biomed Mater Res A 64(2):388–396

    Article  PubMed  Google Scholar 

  17. Kim BS, Mooney DJ (1998) Engineering smooth muscle tissue with a predefined structure. J Biomed Mater Res 41(2):322–332

    Article  PubMed  CAS  Google Scholar 

  18. Lam CXF, Mo XM, Teoh SH, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20(1–2):49–56

    Article  Google Scholar 

  19. Landers R, Mulhaupt R (2000) Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng 282:17–21

    Article  CAS  Google Scholar 

  20. Landers R, Hubner U, Schmelzeisen R, Mülhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23):4437–4447

    Article  PubMed  CAS  Google Scholar 

  21. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378

    Article  PubMed  CAS  Google Scholar 

  22. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486

    Article  PubMed  Google Scholar 

  23. Lu L, Mikos AG (1996) The importance of new processing techniques in tissue engineering. MRS Bull 21(11):28–32

    PubMed  CAS  Google Scholar 

  24. Lu L, Zhu X, Valenzuela RG, Currier BL, Yaszemski MJ (2001) Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop Relat Res (391 Suppl):S251–S270

    Article  PubMed  Google Scholar 

  25. Malafaya PB, Reis RL (2003) Key engineering materials. Trans Tech Pub, Zurich 240–242:39

    Google Scholar 

  26. Mao JS, Zhao LG, Yin YJ, Yao KD (2003) Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials 24(6):1067–1074

    Article  PubMed  CAS  Google Scholar 

  27. Meyer U, Szuwart T, Runte C, Dierksen D, Büchter A, Wiesmann HP (2005) Computer-aided bone tissue engineering. Int J Oral Maxillofac Implants in press

    Google Scholar 

  28. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068

    Article  CAS  Google Scholar 

  29. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27(2):183–189

    Article  PubMed  CAS  Google Scholar 

  30. Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17(14):1417–1422

    Article  PubMed  CAS  Google Scholar 

  31. Murphy WL, Dennis RG, Kileny JL, Mooney DJ (2002) Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng 8(1):43–52

    Article  PubMed  CAS  Google Scholar 

  32. Nishimura I, Garrell RL, Hedrick M, Iida K, Osher S, Wu B (2003) Precursor tissue analogs as a tissue-engineering strategy. Tissue Eng 9 Suppl 1:S77–S89

    Article  Google Scholar 

  33. Ochi K, Chen G, Ushida T, Gojo S, Segawa K, Tai H, Ueno K, Ohkawa H, Mori T, Yamaguchi A, Toyama Y, Hata J , Umezawa A (2003) Use of isolated mature osteoblasts in abundance acts as desired-shaped bone regeneration in combination with a modified poly-dl-lactic-co-glycolic acid (PLGA)-collagen sponge. J Cell Physiol 194(1):45–53

    Article  PubMed  CAS  Google Scholar 

  34. Park A, Wu B, Griffith LG (1998) Integration of surface modification and 3D fabrication techniques to prepare patterned poly(l-lactide) substrates allowing regionally selective cell adhesion. J Biomater Sci Polym Ed 9(2):89–110

    Article  PubMed  CAS  Google Scholar 

  35. Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1998a) Polymer concepts in tissue engineering. J Biomed Mater Res 43(4):422–427

    Article  CAS  Google Scholar 

  36. Peter SJ, Miller ST, Zhu G, Yasko AW, Mikos AG (1998b) In vivo degradation of a poly(propylene fumarate)/beta-tricalcium phosphate injectable composite scaffold. J Biomed Mater Res 41(1):1–7

    Article  CAS  Google Scholar 

  37. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344(5):385–386

    Article  PubMed  CAS  Google Scholar 

  38. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39; discussion 39–40

    Google Scholar 

  39. Schantz JT, Hutmacher DW, Chim H, Ng KW, Lim TC, Teoh SH (2002) Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology. Cell Transplant 11(2):125–138

    PubMed  Google Scholar 

  40. Shea LD, Wang D, Franceschi RT, Mooney DJ (2000) Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng 6(6):605–617

    Article  PubMed  CAS  Google Scholar 

  41. Shen F, Cui YL, Yang LF, Yao KD, Dong XH, Jia WY, Shi HD (2000) A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering. Polym Int 49:1596

    Article  CAS  Google Scholar 

  42. Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751

    Article  PubMed  CAS  Google Scholar 

  43. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24(1):181–194

    Article  PubMed  CAS  Google Scholar 

  44. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1995) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 7(1):23–38

    Article  PubMed  CAS  Google Scholar 

  45. Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56(11):1635–1647

    Article  PubMed  Google Scholar 

  46. Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J (2001) Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 344(20):1511–1514

    Article  PubMed  CAS  Google Scholar 

  47. Vunjak-Novakovic G, Obradovic B, Martin I, Bursac PM, Langer R, Freed LE (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog 14(2):193–202

    Article  PubMed  CAS  Google Scholar 

  48. Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 17(1):130–138

    Article  PubMed  CAS  Google Scholar 

  49. Wiesmann HP, Joos U, Meyer U (2004) Biological and biophysical principles in extracorporal bone tissue engineering. Part II. Int J Oral Maxillofac Surg 33(6):523–530

    Article  PubMed  CAS  Google Scholar 

  50. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I: traditional factors. Tissue Eng 7(6):679–689

    Article  PubMed  CAS  Google Scholar 

  51. Yang S, Leong KF, Du Z, Chua CK (2002a) The design of scaffolds for use in tissue engineering. Part II: rapid prototyping techniques. Tissue Eng 8(1):1–11

    Article  CAS  Google Scholar 

  52. Yang Y, Magnay JL, Cooling L, El HA (2002b) Development of a ‘mechano-active’ scaffold for tissue engineering. Biomaterials 23(10):2119–2126

    Article  CAS  Google Scholar 

  53. Yoon JJ, Park TG (2001) Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res 55(3):401–408

    Article  PubMed  CAS  Google Scholar 

  54. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiesmann, H., Lammers, L. (2009). Scaffold Structure and Fabrication. In: Meyer, U., Handschel, J., Wiesmann, H., Meyer, T. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77755-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77755-7_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77754-0

  • Online ISBN: 978-3-540-77755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics