Skip to main content

Abstract

Application of non-living biomaterials can be conceptualised as the use of materials to replace lost structures, augment existing structures or promote new tissue formation [4, 5]. Common degradable and non-degradable implant materials can be divided into synthetically produced metals and metallic alloys, ceramics, polymers, and composites or modified natural materials [53]. Whereas non-resorbable materials like steel or titanium alloys are commonly used for prosthetic devices, resorbable substitute materials are currently being investigated for their utility in bone and cartilage replacement therapies. Whether or not a material is biodegradable, its surface properties will influence the initial cellular events at the cell–material interface. A major difference between degradable and non-degradable implants is that the surface adhesion towards osteoblasts or chondrocytes is changing in degradable materials, while it remains constant in non-degradable implants. The clinical fate of implants, substitute materials and scaffolds used in tissue engineering strategies depends critically upon the underlying material [54] and the mechanical properties of the material-based scaffold (Table 34.1). In the design process of cell-based implants and engineered bone and cartilage substitutes, it is important to consider the cellular behaviour of the desired cell source towards the material (for review see [66]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athanasiou KA, Shah AR, Hernandez RJ, LeBaron RG (2001) Basic science of articular cartilage repair. Clin Sports Med 20:223–247

    Article  PubMed  CAS  Google Scholar 

  2. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004a) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Article  CAS  Google Scholar 

  3. Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004b) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52

    Article  CAS  Google Scholar 

  4. Burg KJ, Holder WD Jr, Culberson CR, Beiler RJ, Greene KG, Loebsack AB, Roland WD, Eiselt P, Mooney DJ, Halberstadt CR (2000a) Comparative study of seeding methods for three-dimensional polymeric scaffolds. J Biomed Mater Res 51:642–649

    Article  CAS  Google Scholar 

  5. Burg KJ, Porter S, Kellam JF (2000b) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359

    Article  CAS  Google Scholar 

  6. Burkart AC, Schoettle PB, Imhoff AB (2001) [Surgical therapeutic possibilities of cartilage damage]. Unfallchirurg 104:798–807

    Article  PubMed  CAS  Google Scholar 

  7. Chu CR, Coutts RD, Yoshioka M, Harwood FL, Monosov AZ, Amiel D (1995) Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29:1147–1154

    Article  PubMed  CAS  Google Scholar 

  8. Elema H, de Groot JH, Nijenhuis AJ, Pennings AJ, Veth RP, Klompmaker J, Jansen HW (1990) Use of biodegradable polymer implants in meniscus reconstruction. 2. Biological evaluation of porous biodegradable implants in menisci. Colloid Polym Sci 268:1082–1088

    Article  CAS  Google Scholar 

  9. Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 27:11–23

    Article  PubMed  CAS  Google Scholar 

  10. Friedman CD, Costantino PD, Takagi S, Chow LC (1998) Bone Source hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 43:428–432

    Article  PubMed  CAS  Google Scholar 

  11. Frondoza CG, LeGeros RZ, Hungerford DS (1998) Effect of bovine bone derived materials on human osteoblast-like cells in vitro. In: LeGeros RZ, LeGeros JP (eds) Bioceramics 11. World Scientific, Singapore, pp 289–291

    Google Scholar 

  12. Galletti G, Gogolewski S, Ussia G, Farruggia F (1989) Long-term patency of regenerated neoaortic wall following the implant of a fully biodegradable polyurethane prosthesis: experimental lipid diet model in pigs. Ann Vasc Surg 3:236–243

    Article  PubMed  CAS  Google Scholar 

  13. Gatti A, LeGeros RZ, Monari E, Tanza D (1998) Preliminary in vivo evaluation of synthetic calcium phosphate materials. In: LeGeros RZ, LeGeros JP (eds) Bioceramics 11, World Scientific, Singapore, pp 399–402

    Google Scholar 

  14. Gogolewski S, Galletti G (1986) Degradable vascular prosthesis from segmented polyurethanes. Colloid Polym Sci 264:854–858

    Article  CAS  Google Scholar 

  15. Gogolewski S, Pennings AJ (1982) Biodegradable materials of polylactides. IV. Porous biomedical materials based on mixtures of polylactides and polyurethanes. Macromol Chem Rapid Commun 3:839–845

    Article  CAS  Google Scholar 

  16. Gogolewski S, Pennings AJ (1983) An artificial skin based on biodegradable mixtures of polylactides and polyurethanes for full thickness wound covering. Macromol Chem Rapid Commun 4:675–680

    Article  CAS  Google Scholar 

  17. Gogolewski S, Pennings AJ, Lommen E, Nieuwenhuis P, Wildevuur CRH (1983) Growth of a neo-artery induced by a biodegradable polymeric vascular prosthesis. Macromol Chem Rapid Commun 4:213–219

    Article  CAS  Google Scholar 

  18. Gogolewski S, Galletti G, Ussia G (1987a) Polyurethane vascular prosthesis in pigs. Colloid Polym Sci 265:774–778

    Article  CAS  Google Scholar 

  19. Gogolewski S, Walpoth B, Rheiner P (1987b) Polyurethane microporous membranes as pericardial substitutes. Colloid Polym Sci 265:971–977

    Article  CAS  Google Scholar 

  20. Gogolewski S, Gorna K, Rahn B, Wieling R (2001) Biodegradable polyurethane cancellous bone graft substitute promotes bone regeneration in the iliac crest defects. Transactions 24, 573, 27th Annual Meeting, Society for Biomaterials, April 24–29, Saint Paul, MN, USA

    Google Scholar 

  21. Gogolewski S, Gorna K, Turner AS (2002) Regeneration of bicortical defects in the iliac crest of estrogen deficient sheep using new biodegradable polyurethane cancellous bone graft substitutes. A pilot study 48th Annual Meeting, Orthopaedic Research Society, February 10–13, Dallas, TX, USA

    Google Scholar 

  22. Grad S, Zhou L, Gogolewski S, Alini M (2003) Chondrocytes seeded onto poly (L/DL-lactide) 80%/20% porous scaffolds: a biochemical evaluation. J Biomed Mater Res A 66:571–579

    Article  PubMed  CAS  Google Scholar 

  23. Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R (1997) Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res 34:211–220

    Article  PubMed  CAS  Google Scholar 

  24. Gugala Z, Gogolewski S (2000) In vitro growth and activity of primary chondrocytes on a resorbable polylactide three-dimensional scaffold. J Biomed Mater Res 49:183–191

    Article  PubMed  CAS  Google Scholar 

  25. Gutowska A, Jeong B, Jasionowski M (2001) Injectable gels for tissue engineering. Anat Rec 263:342–349

    Article  PubMed  CAS  Google Scholar 

  26. Höhling, HJ, Arnold S, Barckhaus RH, Plate U, Wiesmann HP (1995) Structural relationship between the primary crystal formations and the matrix macromolecules in different hard tissues. Discussion of a general principle. Connect Tissue Res 33:171–178

    Article  PubMed  Google Scholar 

  27. Holmes RE (1979) Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 63:626–633

    Article  PubMed  CAS  Google Scholar 

  28. Hubbell JA (2003) Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14:551–558

    Article  PubMed  CAS  Google Scholar 

  29. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  PubMed  CAS  Google Scholar 

  30. Hutmacher DW, Goh JC, Teoh SH (2001a) An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singapore 30:183–191

    CAS  Google Scholar 

  31. Kamakura S, Sasano Y, Homma H, Suzuki O, Kagayama M, Motegi K (1999) Implantation of octacalcium phosphate (OCP) in rat skull defects enhances bone repair. J Dent Res 78:1682–1687

    Article  PubMed  CAS  Google Scholar 

  32. Kawamura H, Ito A, Miyakawa S, Layrolle P, Ojima K, Ichinose N, Tateishi T (2000) Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res 50:184–190

    Article  PubMed  CAS  Google Scholar 

  33. Kazimiroff J, Frankel SR, LeGeros RZ (1996) Bone/biomaterial interface: autoradiographic assessment. In: Kokubo T, Nakamura T, Mijaji F (eds) Bioceramics 9, Elsevier, London, pp 169–172

    Google Scholar 

  34. Kim WS, Vacanti JP, Cima L, Mooney D, Upton J, Puelacher WC, Vacanti CA (1994) Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plast Reconstr Surg 94:233–237; discussion 238–240

    Google Scholar 

  35. Klompmaker J, Jansen HW, Veth RP, de Groot JH, Nijenhuis AJ, Pennings AJ (1991) Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs. Biomaterials 12:810–816

    Article  PubMed  CAS  Google Scholar 

  36. Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22:181–187

    Article  PubMed  CAS  Google Scholar 

  37. LeGeros RZ (1981) Apatites in biological systems. Prog Crystal Growth Charact 4:1–45

    Article  CAS  Google Scholar 

  38. LeGeros RZ (1988) Calcium phosphate materials in restorative dentistry: a review. Adv Dent Res 2:164–180

    PubMed  CAS  Google Scholar 

  39. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Monogr Oral Sci 15:1–201

    PubMed  CAS  Google Scholar 

  40. LeGeros RZ (1992) Materials for Bone Repair, Augmentation and implant coatings. In: Niwa S (ed) Proceedings of the International Seminar of Orthopedic Research, Nagoya, 1990. Springer-Verlag, Tokyo, pp 147–174

    Google Scholar 

  41. LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res (395):81–98

    Article  PubMed  Google Scholar 

  42. LeGeros RZ, Tung MS (1983) Chemical stability of carbonate- and fluoride-containing apatites. Caries Res 17:419–429

    PubMed  CAS  Google Scholar 

  43. LeGeros RZ, Trautz OR, LeGeros JP, Klein E, Shirra WP (1967) Apatite crystallites: effect of carbonate on morphology. Science 155(1409–11)

    Article  PubMed  CAS  Google Scholar 

  44. LeGeros RZ, LeGeros JP, Trautz OR, Shirra WP (1971) Conversion of monetite, CaHPO4, to apatites: effect of carbonate on the crystallinity and the morphology of the apatite crystallites. Adv Xray Anal 14:57–66

    CAS  Google Scholar 

  45. LeGeros RZ, Daculsi G, Kijkowska R (1989) The effect of magnesium on the formation of apatites whitlockites. In: Itokawa Y, Durlach J (eds) Magnesium in Health and Disease, J Libbey, New York, pp 11–19

    Google Scholar 

  46. Legeros RZ, Orly I, Gregoire M, Daculsi G (1991) Substrate surface dissolution and interfacial biological mineralization. In: Davies JED (ed) The Bone Biomaterial Interface. University of Toronto Press, Toronto, pp 76–88

    Google Scholar 

  47. LeGeros RZ, Bautista C, LeGeros JP (1995a) Comparative properties of bioactive bone graft materials. In: Hench L, Wilson-Hench J (eds) Bioceramics 8. Pergamon, New York, pp 81–87

    Google Scholar 

  48. LeGeros RZ, Kijkowska R, Bautista C, LeGeros JP (1995b) Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites. Connect Tissue Res 33:203–209

    Article  CAS  Google Scholar 

  49. LeGeros RZ, LeGeros JP, Daculsi G, Kijkowska R (1995c) Calcium phosphate biomaterials: preparation, properties and biodegradation. In: Wise DL, Trantolo DJ, Altobelli DE (eds) Encyclopedic Handbook of Biomaterials and Bioengineering. Part 1. Marcel Dekker, New York, pp 1429–1463

    Google Scholar 

  50. LeGeros RZ, Sakae T, Bautista C, Retino M, LeGeros JP (1996) Magnesium and carbonate in enamel and synthetic apatites. Adv Dent Res 10:225–231

    Article  PubMed  CAS  Google Scholar 

  51. LeGeros RZ, Bleiwas CB, Retino M, Rohanizadeh R, LeGeros JP (1999) Zinc effect on the in vitro formation of calcium phosphates: relevance to clinical inhibition of calculus formation. Am J Dent 12:65–71

    PubMed  CAS  Google Scholar 

  52. Marx G (2003) Evolution of fibrin glue applicators. Transfus Med Rev 17:287–298

    Article  PubMed  Google Scholar 

  53. Meyer U, Joos U, Jayaraman M, Stamm T, Hohoff A, Fillies T, Stratmann U, Wiesmann HP (2004) Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials 25:1959–1967

    Article  PubMed  CAS  Google Scholar 

  54. Meyer U, Joos U, Wiesmann HP (2004) Biological and biophysical principles in extracorporal bone tissue engineering. Part I. Int J Oral Maxillofac Surg 33:325–332

    Article  PubMed  CAS  Google Scholar 

  55. Michel D, Harmand MF (1990) Fibrin seal in wound healing: effect of thrombin and [Ca2+] on human skin fibroblast growth and collagen production. J Dermatol Sci 1:325–333

    Article  PubMed  CAS  Google Scholar 

  56. Monroe EA, Votava W, Bass DB, McMullen J (1971) New calcium phosphate ceramic material for bone and tooth implants. J Dent Res 50:860–861

    PubMed  CAS  Google Scholar 

  57. Moreno EC, Kresak M, Zahradnik RT (1977) Physicochemical aspects of fluoride-apatite systems relevant to the study of dental caries. Caries Res 11:142–171

    Article  PubMed  Google Scholar 

  58. Ohgushi H, Caplan AI (1999) Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res 48:913–927

    Article  PubMed  CAS  Google Scholar 

  59. Ohgushi H, Miyake J, Tateishi T (2003) Mesenchymal stem cells and bioceramics: strategies to regenerate the skeleton. Novartis Found Symp 249:118–127; discussion 127–132, 170–174, 239–241

    Google Scholar 

  60. Okazaki M, LeGeros RZ (1992) Crystallographic and chemical properties of Mg-containing apatites before and after suspension in solutions. Magnes Res 5:103–108

    PubMed  CAS  Google Scholar 

  61. Okazaki M, Matsumoto T, Taira M, et al (1998) CO3apatite preparations with solubility gradient: potential degradable biomaterials. In: LeGeros RZ, LeGeros JP (eds), Bioceramics 11. World Scientific, Singapore, pp 85–88

    Google Scholar 

  62. Pavesio A, Abatangelo G, Borrione A, Brocchetta D, Hollander AP, Kon E, Torasso F, Zanasi S, Marcacci M (2003) Hyaluronan-based scaffolds (hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found Symp 249:203–217; discussion 229–233, 234–238, 239–241

    Google Scholar 

  63. Reddi AH (2000) Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng 6:351–359

    Article  PubMed  CAS  Google Scholar 

  64. Saad B, Neuenschwander P, Uhlschmid GK, Suter UW (1999) New versatile, elastomeric, degradable polymeric materials for medicine. Int J Biol Macromol 25:293–301

    Article  PubMed  CAS  Google Scholar 

  65. Sanchez C, Arribart H, Guille MM (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288

    Article  PubMed  CAS  Google Scholar 

  66. Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364

    Article  PubMed  CAS  Google Scholar 

  67. Shors EC, Holmes RE (1993) Porous Hydroxyapatite. In: Hench LL, Wilson Hench J (eds) An Introduction to Bioceramics. World Scientific, London, pp 181–193

    Google Scholar 

  68. Sittinger M, Bujia J, Rotter N, Reitzel D, Minuth WW, Burmester GR (1996) Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials 17:237–242

    Article  PubMed  CAS  Google Scholar 

  69. Thomas S (2000) Alginate dressings in surgery and wound management—Part 1. J Wound Care 9:56–60

    PubMed  CAS  Google Scholar 

  70. Toquet J, Rohanizadeh R, Guicheux J, Couillaud S, Passuti N, Daculsi G, Heymann D (1999) Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic. J Biomed Mater Res 44:98–108

    Article  PubMed  CAS  Google Scholar 

  71. Uemura T, Dong J, Wang Y, Kojima H, Saito T, Iejima D, Kikuchi M, Tanaka J, Tateishi T (2003) Transplantation of cultured bone cells using combinations of scaffolds and culture techniques. Biomaterials 24:2277–2286

    Article  PubMed  CAS  Google Scholar 

  72. Vacanti CA, Langer R, Schloo B, Vacanti JP (1991) Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg 88:753–759

    Article  PubMed  CAS  Google Scholar 

  73. Valentini P, Abensur D, Wenz B, Peetz M, Schenk R (2000) Sinus grafting with porous bone mineral (Bio-Oss) for implant placement: a 5-year study on 15 patients. Int J Periodontics Restorative Dent 20:245–253

    PubMed  CAS  Google Scholar 

  74. Wiesmann HP, Meyer U, Plate U, Höhling HJ (2005) Aspects of collagen mineralization in hard tissue formation. Int Rev Cytol 242:121–156

    Article  PubMed  CAS  Google Scholar 

  75. Yilmaz E (2004) Chitosan: a versatile biomaterial. Adv Exp Med Biol 553:59–68

    PubMed  CAS  Google Scholar 

  76. Zapanta-LeGeros R (1965) Effect of carbonate on the lattice parameters of apatite. Nature 206:403–404

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiesmann, H., Meyer, U. (2009). Biomaterials. In: Meyer, U., Handschel, J., Wiesmann, H., Meyer, T. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77755-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77755-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77754-0

  • Online ISBN: 978-3-540-77755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics