Skip to main content

Abstract

Valvular heart disease is an important cause of morbidity and mortality worldwide. Valve replacement represents the most common surgical therapy for end-stage valvular heart disease. Currently, 300,000 procedures are performed annually worldwide. Furthermore, eight of 1000 children are born with congenital cardiac defects. Every fifth of these needs a heart valve replacement. Currently, clinically available cardiovascular prosthetic substitutes, including xenografts, mechanical prostheses, and homografts, function well but have some disadvantages in common [1–3]. They consist of foreign, nonviable materials which entail the risk of thromboembolism and the lack of ability to repair, remodel, and grow, which leads to multiple reoperations. Pediatric patients are of particular interest in this context because they “outgrow” the prostheses so that multiple reoperations and considerable suffering for the patients and their families are the consequence [4]. Tissue engineering could be an alternative in overcoming these disadvantages. The interdisciplinary approach of tissue engineering combines principles of engineering and materials science with biology and vascular surgery to fabricate viable and functional prostheses from autologous, living cells with the aim of long-lasting replacement or reconstruction of the dysfunctional native tissue. Using autologous cells, these viable prostheses should have the potential to integrate, grow, remodel, and repair and therefore to conceivably make reoperations unnecessary. There are three major requirements for a successful tissue engineered cardiovascular substitute: (a) isolation of a suitable cell source, if possible of an autologous origin; (b) a suitable 3-D scaffold; and (c) in vitro culture conditions conducive to fabrication of the construct before implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunwald E. Valvular heart disease. In: Heart disease, 5th edn, 1997, Braunwald E ed., Saunders, Philadelphia

    Google Scholar 

  2. Hammermeister KE, Sethi GK, Henderson WG et al. A comparison of outcomes in men 11 years after heart-valve replacement with mechanical valve or bioprosthesis. N Engl J Med 1993; 328:1289–1296

    Article  PubMed  CAS  Google Scholar 

  3. Vongpatanasin W, Hillis D, Lange RA. Prosthetic heart valves. N Engl J Med 1996; 335:407–416

    Article  PubMed  CAS  Google Scholar 

  4. Cannegieter SC, Rosendaal FR, Briet E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 1994; 89:635–641

    PubMed  CAS  Google Scholar 

  5. Schnell AM, Hoerstrup SP, Zund G, Kolb S, Sodian R, Visjager JF, Grunenfelder J, Suter A, Turina M. Optimal cell source for cardiovascular tissue engineering: venous vs. aortic human myofibroblasts. Thorac Cardiovasc Surg 2001; 49(4):221–225

    Article  PubMed  CAS  Google Scholar 

  6. Hoerstrup SP, Kadner A, Melnitchouk S, Trojan A, Eid K, Tracy J, Sodian R, Visjager JF, Kolb SA, Grunenfelder J, Zund G Turina M. Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation 2002; 106 [suppl I]:I143–I150

    PubMed  Google Scholar 

  7. Sodian R, Lüders C. Krämer L, Kübler WM, Shakibaei M, Reichart B, Däbritz S, Hetzer R. Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. Ann Thorac Surg 2006; 81(6):2207–2216

    Article  Google Scholar 

  8. Kadner A, Hoerstrup SP, Breymann C, Maurus CF, Melnitchouk S, Kadner G, Turina M. Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann Thorac Surg 2002; 74(4):S1422–1428

    Article  PubMed  Google Scholar 

  9. Jockenhoevel S, Zünd G, Hoerstrup S, Chalabi K, Sachweh J, Demircan B, Turina M. Fibrin gel—advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg 2001; 19:424–430

    Article  PubMed  CAS  Google Scholar 

  10. Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 2002; 13(5):377–383

    Article  PubMed  CAS  Google Scholar 

  11. Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, Langer R, Vacanti JP, Mayer JE Jr. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 1995; 60(6 Suppl):S513–516

    Article  PubMed  CAS  Google Scholar 

  12. Ye Q, Zünd G, Jockenhoevel S, Schoeberlein A, Hoerstrup S, Grunenfelder J, Benedikt P, Turina M. Scaffold precoating with human autologous extracellular matrix for improved cell attachment in cardiovascular tissue engineering. ASAIO J 2000; 46:730–733

    Article  PubMed  CAS  Google Scholar 

  13. Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S, Vacanti JP, Schoen FJ, Mayer JE Jr. Functional living trileaflet heart valves grown in vitro. Circulation 2000; 102(19 Suppl 3):III44–449

    PubMed  CAS  Google Scholar 

  14. Sodian R, Lüders C. Krämer L, Kübler WM, Shakibaei M, Reichart B, Däbritz S, Hetzer R. Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. Ann Thorac Surg 2006; 81(6):2207–2216

    Article  Google Scholar 

  15. Sodian R, Lemke T, Fritsche C, Hoerstrup SP, Fu P, Potapov EV, Hausmann H, Hetzer R. Tissue-engineering bioreactors: a new combined cell-seeding and perfusion system for vascular tissue engineering. Tissue Eng 2002; 8(5):863–870

    Article  PubMed  CAS  Google Scholar 

  16. Lüders C, Sodian R, Shakibaei M, Hetzer R. Short-term culture of human neonatal myofibroblasts seeded using a novel three-dimensional rotary seeding device. ASAIO J 2006; 52:310–314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lüders, C., Stamm, C., Hetzer, R. (2009). Tissue Engineering of Heart Valves. In: Meyer, U., Handschel, J., Wiesmann, H., Meyer, T. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77755-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77755-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77754-0

  • Online ISBN: 978-3-540-77755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics