Skip to main content

Abstract

Skeletal muscle is a classical example of “structure determining function.” Successful strategies for clinical applications of tissue-engineered skeletal muscle must recapitulate the processes that muscle undergoes during either embryonic development or adult regeneration. As discussed in this chapter, current approaches to tissue engineering of skeletal muscle broadly utilize different aspects of these processes, e.g. the generation of multinucleate, elongated myotubes (nascent myofibres) surrounded by a connective tissue sheath. The former are generated by encouraging muscle precursor cell fusion, in which alignment is vital, so that surface topography, fibre scaffolds and mechanical loading are key processes. Connective tissue sheaths can be generated by encasing constructs in materials such as collagen and fibrin. Finally, functional connections need to be made to the skeletal system via tendons, to the neural system via neuromuscular junctions and to the vascular system. The chapter that follows reviews the current situation as regards these developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saxena AK, Marler J, Benvenuto M et al (1999) Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng 5:525–32

    Article  PubMed  CAS  Google Scholar 

  2. Alsberg E, Hill EE, Mooney DJ (2001) Craniofacial tissue engineering. Crit Rev Oral Biol M 12:64–75

    Article  CAS  Google Scholar 

  3. Purslow PP, Duance VC, Structure and function of intramuscular connective tissue. In: Hukins DWL (1990) Connective Tissue Matrix. CRC Press, Boca Raton, FL

    Google Scholar 

  4. Hanson J, Huxley HE (1954) Structural basis of the cross-striations in muscle. Nature 172: 530–2

    Article  Google Scholar 

  5. Shuler CF, Dalrymple KR (2001) Molecular regulation of tongue and craniofacial muscle differentiation. Crit Rev Oral Biol Med 12:3–17

    Article  PubMed  CAS  Google Scholar 

  6. Miller JB, Crow MT, Stockdale FE (1985) Slow and fast myosin heavy chain content defines three types of myotubes in early muscle cell cultures. J Cell Biol 101:1643–50

    Article  PubMed  CAS  Google Scholar 

  7. Crow MT, Stockdale FE (1986) Myosin expression and specialization among the earliest muscle fibers of the developing avian limb. Dev Biol 113:238–54

    Article  PubMed  CAS  Google Scholar 

  8. Miller JB, Stockdale FE (1986) Developmental origins of skeletal muscle fibers: clonal analysis of myogenic cell lineages based on expression of fast and slow myosin heavy chains. P Natl Acad Sci USA 83:3860–4

    Article  CAS  Google Scholar 

  9. Miller JB, Stockdale FE (1986) Developmental regulation of the multiple myogenic cell lineages of the avian embryo. J Cell Biol 103:2197–208

    Article  PubMed  CAS  Google Scholar 

  10. Schafer DA, Miller JB, Stockdale FE (1987) Cell diversification within the myogenic lineage: in vitro generation of two types of myoblasts from a single myogenic progenitor cell. Cell 48:659–70

    Article  PubMed  CAS  Google Scholar 

  11. Buonanno A, Apone L, Morasso MI et al (1992) The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA. Nucleic Acids Res 20:539–44

    Article  PubMed  CAS  Google Scholar 

  12. Hughes SM, Taylor JM, Tapscott SJ et al (1993) Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118 1137–47

    PubMed  CAS  Google Scholar 

  13. Sanes JR, Schachner M, Couvalt J (1986) Expression of several adhesive molecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and heparin sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscles. J Cell Biol 102:420–431

    Article  PubMed  CAS  Google Scholar 

  14. Lewis MP, Machell JRA, Hunt NP et al (2001) The extracellular matrix of muscle-implications for manipulation of the craniofacial musculature. Eur J Oral Sci 109:209–221

    Article  PubMed  CAS  Google Scholar 

  15. Maley MAL, Davies MJ, Grounds MD (1995) Extracellular matrix, growth factors, genetics: their influence on cell proliferation and myotube formation in primary cultures of adult mouse skeletal muscle. Exp Cell Res 219:169–179

    Article  PubMed  CAS  Google Scholar 

  16. Gullberg D, Velling T, Lohikangas L et al (1998) Integrins during muscle development and in muscular dystrophies. Frontiers Biosci 3:d1039–1050

    CAS  Google Scholar 

  17. Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117:1183–1198

    PubMed  CAS  Google Scholar 

  18. Bischoff R (1997) Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208:505–515

    Article  PubMed  CAS  Google Scholar 

  19. Fisher D, Rathgaber M (2006) An overview of muscle regeneration following acute injury. J Phys Ther Sci 18:57–66

    Article  Google Scholar 

  20. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    PubMed  CAS  Google Scholar 

  21. Cossu G, Tajbakhsh S, Buckingham M (1996) How is myogenesis initiated in the embryo? Trends Genet 12:218–223

    Article  PubMed  CAS  Google Scholar 

  22. Stockdale FE, Miller JB (1987) The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Dev Biol 123:1–9

    Article  PubMed  CAS  Google Scholar 

  23. Feldman JL, Stockdale FE (1991) Skeletal muscle satellite cell diversity: satellite cells form fibers of different types in cell culture. Dev Biol 143:320–334

    Article  PubMed  CAS  Google Scholar 

  24. Yablonka-Reuveni Z, Nameroff M (1990) Temporal differences in desmin expression between myoblasts from embryonic and adult chicken skeletal muscle. Differentiation 45:21–8

    Article  PubMed  CAS  Google Scholar 

  25. Rosen GD, Sanes JR, LaChance R et al (1992) Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell 69:1107–1119

    Article  PubMed  CAS  Google Scholar 

  26. Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–435

    Article  PubMed  CAS  Google Scholar 

  27. Campion DR (1984) The muscle satellite cell: A review. Int Rev Cytol 87:225–251

    Article  PubMed  CAS  Google Scholar 

  28. Schultz E (1976) Fine structure of satellite cells in growing skeletal muscle. Am J Anat 147:49–70

    Article  PubMed  CAS  Google Scholar 

  29. Muir AR, Kanji AH, Allbrook D (1965) The structure of the satellite cells in skeletal muscle. J Anat 99:435–44

    PubMed  CAS  Google Scholar 

  30. Bischoff R (1989) Analysis of muscle regeneration using single myofibers in culture. Med Sci Sports Exerc 21(5 Suppl):S164–72

    PubMed  CAS  Google Scholar 

  31. Schultz E, Jaryszak DL, Valliere CR (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8:217–222

    Article  PubMed  CAS  Google Scholar 

  32. Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115: 129–139

    Article  PubMed  CAS  Google Scholar 

  33. Hughes SM, Blau HM (1990) Migration of myoblasts across basal lamina during skeletal muscle development. Nature 345:350–353

    Article  PubMed  CAS  Google Scholar 

  34. Grounds MD, Yablonka-Reuveni Z (1993) Molecular and cell biology of skeletal muscle regeneration. Mol Cell Biol Hum Dis Ser 3:210–56

    PubMed  CAS  Google Scholar 

  35. Vandenburgh HH (1988) A computerized mechanical cell stimulator for tissue culture: Effects on skeletal muscle organogenesis. In Vitro Cell Dev Biol 24:609–619

    Article  PubMed  CAS  Google Scholar 

  36. Vandenburgh HH, Karlisch P (1989) Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell Dev Biol 25:607–616

    Article  PubMed  CAS  Google Scholar 

  37. Vandenburgh HH, Hatfaludy S, Sohar I et al (1990) Stretch induced prostaglandins and protein turnover in cultured skeletal muscle. Am J Physiol 259:C232–40

    PubMed  CAS  Google Scholar 

  38. Vandenburgh HH, Swasdison S, Karlisch P (1991) Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro. FASEB J 5:2860–7

    PubMed  CAS  Google Scholar 

  39. Vandenburgh HH, Karlisch P, Shansky J et al (1991) Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am J Physiol 260:C475–84

    PubMed  CAS  Google Scholar 

  40. Dennis RG, Kosnik PE, Gilbert ME et al (2001) Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am J Physiol Cell Physiol 280:C288–C295

    PubMed  CAS  Google Scholar 

  41. Acarturk TO, Peel MM, Petrosko P et al (1999) Control of attachment, morphology, and proliferation of skeletal myoblasts on silanized glass. J Biomed Mater Res 44:355–70

    Article  PubMed  CAS  Google Scholar 

  42. Molnar P, Wang W, Natarajan A et al (2007) Photolithographic Patterning of C2C12 Myotubes using Vitronectin as Growth Substrate in Serum-Free Medium. Biotechnol Prog 23:265–8

    Article  PubMed  CAS  Google Scholar 

  43. Shen JY, Chan-Park MB, Feng ZQ et al (2006) UV-embossed microchannel in biocompatible polymeric film: application to control of cell shape and orientation of muscle cells. J Biomed Mater Res B Appl Biomater 77:423–30

    PubMed  Google Scholar 

  44. Lam MT, Sim S, Zhu X et al (2006) The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes. Biomaterials 27:4340–7

    Article  PubMed  CAS  Google Scholar 

  45. Das M, Gregory CA, Molnar P et al (2006) A defined system to allow skeletal muscle differentiation and subsequent integration with silicon microstructures. Biomaterials 27:4374–80

    Article  PubMed  CAS  Google Scholar 

  46. Mooney DJ, Mikos AG (1999) Growing new organs. Sci Am 280:60–5

    Article  PubMed  CAS  Google Scholar 

  47. Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci Polymer Edn 12:107–124

    Article  CAS  Google Scholar 

  48. Shansky J, Creswick B, Lee P et al (2006) Paracrine release of insulin-like growth factor 1 from a bioengineered tissue stimulates skeletal muscle growth in vitro. Tissue Eng 12:1833–41

    Article  PubMed  CAS  Google Scholar 

  49. Hill E, Boontheekul T, Mooney DJ (2006) Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Eng 12:1295–304

    Article  PubMed  CAS  Google Scholar 

  50. Kamelger FS, Marksteiner R, Margreiter E et al (2004) A comparative study of three different biomaterials in the engineering of skeletal muscle using a rat animal model. Biomaterials 25:1649–55

    Article  PubMed  CAS  Google Scholar 

  51. Saxena AK, Willital GH, Vacanti JP (2001) Vascularized three-dimensional skeletal muscle tissue-engineering. Biomed Mater Eng 11:275–81

    PubMed  CAS  Google Scholar 

  52. Huang NF, Patel S, Thakar RG, Wu J, Hsiao BS, Chu B, Lee RJ, Li S (2006) Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett 6:537–42

    Article  PubMed  CAS  Google Scholar 

  53. Cronin EM, Thurmond FA, Bassel-Duby R et al (2004) Protein-coated poly (l-lactic acid) fibers provide a substrate for differentiation of human skeletal muscle cells. J Biomed Mater Res A 69:373–81

    Article  PubMed  CAS  Google Scholar 

  54. Williamson MR, Adams EF, Coombes AG (2006) Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture. Biomaterials 27:1019–26

    Article  PubMed  CAS  Google Scholar 

  55. Riboldi SA, Sampaolesi M, Neuenschwander P et al (2005) Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials 26:4606–15

    Article  PubMed  CAS  Google Scholar 

  56. Mulder MM, Hitchcock RW, Tresco PA (1998) Skeletal myogenesis on elastomeric substrates: implications for tissue engineering. J Biomater Sci Polym Ed 9:731–48

    Article  PubMed  CAS  Google Scholar 

  57. Neumann T, Hauschka SD, Sanders JE (2003) Tissue engineering of skeletal muscle using polymer fiber arrays. Tissue Eng 9:995–1003

    Article  PubMed  CAS  Google Scholar 

  58. Lin ST, Krebs SL, Kadiyala S et al (1994) Development of bioabsorbable glass-fibers. Biomaterials 15:1057–1061

    Article  PubMed  CAS  Google Scholar 

  59. Ahmed I, Collins CA, Lewis MP et al (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25:3223–3232

    Article  PubMed  CAS  Google Scholar 

  60. Shah R, Sinanan AC, Knowles JC et al (2005) Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct. Biomaterials 26:1497–505

    Article  PubMed  CAS  Google Scholar 

  61. Dennis RG, Kosnik PE (2000) Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 36:327–335

    Article  PubMed  CAS  Google Scholar 

  62. Kosnik PE, Faulkner JA, Dennis RG (2001) Functional development of engineered skeletal muscle from adult and neonatal rats. Tissue Eng 7:573–84

    Article  PubMed  CAS  Google Scholar 

  63. Baker EL, Dennis RG, Larkin LM (2003) Glucose transporter content and glucose uptake in skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 39:434–9

    Article  PubMed  CAS  Google Scholar 

  64. Huang YC, Dennis RG, Larkin L et al (2005) Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol 98:706–71

    Article  PubMed  Google Scholar 

  65. Beier JP, Stern-Straeter J, Foerster VT et al (2006) Tissue engineering of injectable muscle: three-dimensional myoblast-fibrin injection in the syngeneic rat animal model. Plast Reconstr Surg 118:1113–21

    Article  PubMed  CAS  Google Scholar 

  66. Vandenburgh HH (1983) Cell shape and growth regulation in skeletal muscle: exogenous versus endogenous factors. J Cell Physiol 116:363–71

    Article  PubMed  CAS  Google Scholar 

  67. Okano T, Satoh S, Oka T et al (1997) Tissue engineering of skeletal muscle. Highly dense, highly oriented hybrid muscular tissues biomimicking native tissues. Cell Transplant 6:109–118

    Article  PubMed  CAS  Google Scholar 

  68. Okano T, Matsuda T (1998) Muscular tissue engineering: capillary-incorporated hybrid muscular tissues in vivo tissue culture. Cell Transplant 7:435–42

    Article  PubMed  CAS  Google Scholar 

  69. Okano T, Matsuda T (1998) Tissue engineered skeletal muscle: preparation of highly dense, highly oriented hybrid muscular tissues. Cell Transplant 7:71–82

    Article  PubMed  CAS  Google Scholar 

  70. Cheema U, Brown RA, Yang S-Y et al (2005) Mechanical signals and IGF-I gene splicing involved in the development of skeletal muscle in vitro. J Cell Physiol 202:67–74

    Article  PubMed  CAS  Google Scholar 

  71. Powell CA, Smiley BL, Mills J et al (2002) Mechanical stimulation improves tissue-engineered human skeletal muscle. Am J Physiol Cell Physiol 283:C1557–65

    PubMed  CAS  Google Scholar 

  72. Levenberg S, Rouwkema J, Macdonald M et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–84

    Article  PubMed  CAS  Google Scholar 

  73. Borschel GH, Dow DE, Dennis RG et al (2006) Tissue-engineered axially vascularized contractile skeletal muscle. Plast Reconstr Surg 117:2235–42

    Article  PubMed  CAS  Google Scholar 

  74. Bach AD, Arkudas A, Tjiawi J et al (2006) A new approach to tissue engineering of vascularized skeletal muscle. J Cell Mol Med 10:716–26

    Article  PubMed  CAS  Google Scholar 

  75. Larkin LM, Van der Meulen JH, Dennis RG et al (2006) Functional evaluation of nerve-skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 42:75–82

    Article  PubMed  CAS  Google Scholar 

  76. Bach AD, Beier JP, Stark GB (2003) Expression of Trisk 51, agrin and nicotinic-acetycholine receptor epsilon-subunit during muscle development in a novel three-dimensional muscle-neuronal co-culture system. Cell Tissue Res 314:263–74

    Article  PubMed  CAS  Google Scholar 

  77. Larkin LM, Calve S, Kostrominova TY, Arruda EM (2006) Structure and functional evaluation of tendon-skeletal muscle constructs engineered in vitro. Tissue Eng 12:3149–58

    Article  PubMed  CAS  Google Scholar 

  78. Bitar M, Knowles JC, Lewis MP et al (2005) Soluble phosphate glass fibres for repair of bone-ligament interface. J Mater Sci Mater Med 16:1131–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lewis, M., Mudera, V., Cheema, U., Shah, R. (2009). Muscle Tissue Engineering. In: Meyer, U., Handschel, J., Wiesmann, H., Meyer, T. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77755-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77755-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77754-0

  • Online ISBN: 978-3-540-77755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics