Skip to main content

Abstract

Over the last few decades reconstructive surgery and general medicine has shifted from a resection-oriented approach towards strategies focusing on the repair and regeneration of tissues. Artificial tissue substitutes containing metals, ceramics and polymers, to maintain skeletal function [6], and artificial devices, such as pacemakers and insulin pumps, have been used to reach this goal. These artificial materials and devices have significantly improved the possibility for clinicians to restore the form and, to some extent, the function of defective bones as well as to increased life expectancy of patients, e.g. with valvular heart disease or diabetes mellitus. Despite the fact that every artificial device has specific disadvantages, the use of biomaterials is currently a common treatment option in clinical practice. More detailed understanding exists concerning the transplantation of cells and tissues; thus, autografts are the second mainstay in clinical practice. The advantages of transplanting the body’s own tissues ensure that autograft tissue transplantation can now be considered to be the “gold standard” in bone reconstruction. The reason for the primacy of tissue grafts over non-living biomaterials is that they contain living cells, thus possessing biological activity. The main disadvantages of using autografts are donor site morbidity and donor shortage [19]. Research is currently in progress into the use of cell-based approaches in reconstructive surgery, since cells are the driving elements for all repair and regeneration processes. As they synthesize and assemble the extracellular matrix, cells can be considered the basic unit needed for a biological regeneration strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amit M, Carpenter MK, Inokuma MS et al (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271-278

    Article  PubMed  CAS  Google Scholar 

  2. Arnold AS, Laporte V, Dumont S et al (2006) Comparing reagents for efficient transfection of human primary myoblasts: FuGENE 6, Effectene and ExGen 500. Fundam Clin Pharmacol 20:81-89

    Article  PubMed  CAS  Google Scholar 

  3. Atala A (2007) Engineering tissues, organs and cells. J Tissue Eng Regen Med 1:83-96

    Article  PubMed  Google Scholar 

  4. Avilion AA, Nicolis SK, Pevny LH et al (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126-140

    Article  PubMed  CAS  Google Scholar 

  5. Bielby RC, Boccaccini AR, Polak JM et al (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 10:1518-1525

    PubMed  CAS  Google Scholar 

  6. Binderman I, Fin N (1990) Bone substitutesorganic, inorganic, and polymeric: Cell material interactions. In: Yamamuro T, Hench L and Wilson J eds) CRC Handbook of Bioactive Ceramics. CRC Press, Boca Raton, pp 45-51

    Google Scholar 

  7. Boiani M, Scholer HR (2005) Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6:872-884

    Article  PubMed  CAS  Google Scholar 

  8. Brimble SN, Zeng X, Weiler DA et al (2004) Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev 13:585-597

    Article  PubMed  CAS  Google Scholar 

  9. Brimble SN, Sherrer ES, Uhl EW et al (2007) The cell surface glycosphingolipids SSEA-3 and SSEA-4 are not essential for human ESC pluripotency. Stem Cells 25:54-62

    Article  PubMed  CAS  Google Scholar 

  10. Burt RK, Verda L, Kim DA et al (2004) Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J Exp Med 199:895-904

    Article  PubMed  CAS  Google Scholar 

  11. Chambers I, Colby D, Robertson M et al (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643-655

    Article  PubMed  CAS  Google Scholar 

  12. Chambers I (2004) The molecular basis of pluripotency in mouse embryonic stem cells. Cloning Stem Cells 6:386-391

    Article  PubMed  CAS  Google Scholar 

  13. Chaudhry GR, Yao D, Smith A et al (2004) Osteogenic cells derived from embryonic stem cells produced bone nodules in three-dimensional scaffolds. J Biomed Biotechnol 2004:203-210

    Article  PubMed  Google Scholar 

  14. Cibelli JB, Campbell KH, Seidel GE et al (2002) The health profile of cloned animals. Nat Biotechnol 20:13-14

    Article  PubMed  CAS  Google Scholar 

  15. Cogle CR, Guthrie SM, Sanders RC et al (2003) An overview of stem cell research and regulatory issues. Mayo Clin Proc 78:993-1003

    Article  PubMed  Google Scholar 

  16. Collas P (2007) Dedifferentiation of cells: new approaches. Cytotherapy 9:236-244

    Article  PubMed  CAS  Google Scholar 

  17. D’Ippolito G, Schiller PC, Ricordi C et al (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14:1115-1122

    Article  PubMed  CAS  Google Scholar 

  18. Daheron L, Opitz SL, Zaehres H et al (2004) LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22:770-778

    Article  PubMed  CAS  Google Scholar 

  19. Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2:187-208

    Article  PubMed  CAS  Google Scholar 

  20. Drab M, Haller H, Bychkov R et al (1997) From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. Faseb J 11:905-915

    PubMed  CAS  Google Scholar 

  21. Dvash T, Mayshar Y, Darr H et al (2004) Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies. Hum Reprod 19:2875-2883

    Article  PubMed  CAS  Google Scholar 

  22. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156

    Article  PubMed  CAS  Google Scholar 

  23. Gilbert DM (2004) The future of human embryonic stem cell research: addressing ethical conflict with responsible scientific research. Med Sci Monit 10:RA99-103

    PubMed  Google Scholar 

  24. Gurdon JB (1962) Adult frogs derived from the nuclei of single somatic cells. Dev Biol 4:256-273

    Article  PubMed  CAS  Google Scholar 

  25. Halleux C, Sottile V, Gasser JA et al (2001) Multi-lineage potential of human mesenchymal stem cells following clonal expansion. J Musculoskelet Neuronal Interact 2:71-76

    PubMed  CAS  Google Scholar 

  26. Handschel J, Wiesmann HP, Depprich R et al (2006) Cell-based bone reconstruction therapies--cell sources. Int J Oral Maxillofac Implants 21:890-898

    PubMed  Google Scholar 

  27. Handschel J, Berr K, Depprich R et al (2008) Osteogenic differentiation of embryonic stem cells. Head Face Med 4:10

    Article  PubMed  Google Scholar 

  28. Heng BC, Cao T, Stanton LW et al (2004) Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res 19:1379-1394

    Article  PubMed  CAS  Google Scholar 

  29. Hochedlinger K, Jaenisch R (2003) Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N Engl J Med 349:275-286

    Article  PubMed  CAS  Google Scholar 

  30. Itskovitz-Eldor J, Schuldiner M, Karsenti D et al (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88-95

    PubMed  CAS  Google Scholar 

  31. Kitsberg D (2007) Human embryonic stem cells for tissue engineering. Methods Mol Med 140:33-65

    Article  PubMed  CAS  Google Scholar 

  32. Klimanskaya I, Chung Y, Meisner L et al (2005) Human embryonic stem cells derived without feeder cells. Lancet 365:1636-1641

    Article  PubMed  CAS  Google Scholar 

  33. Klug MG, Soonpaa MH, Koh GY et al (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98:216-224

    Article  PubMed  CAS  Google Scholar 

  34. Kogler G, Sensken S, Airey JA et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123-135

    Article  PubMed  Google Scholar 

  35. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920-926

    Article  PubMed  CAS  Google Scholar 

  36. Lavon N, Yanuka O, Benvenisty N (2004) Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation 72:230-238

    Article  PubMed  CAS  Google Scholar 

  37. Lee SH, Lumelsky N, Studer L et al (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18:675-679

    Article  PubMed  CAS  Google Scholar 

  38. Lysaght MJ, Reyes J (2001) The growth of tissue engineering. Tissue Eng 7:485-493

    Article  PubMed  CAS  Google Scholar 

  39. Maitra A, Arking DE, Shivapurkar N et al (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37:1099-1103

    Article  PubMed  CAS  Google Scholar 

  40. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634-7638

    Article  PubMed  CAS  Google Scholar 

  41. Matin MM, Walsh JR, Gokhale PJ et al (2004) Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells 22:659-668

    Article  PubMed  CAS  Google Scholar 

  42. McDonald JW, Liu XZ, Qu Y et al (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410-1412

    Article  PubMed  CAS  Google Scholar 

  43. Menendez P, Wang L, Bhatia M (2005) Genetic manipulation of human embryonic stem cells: a system to study early human development and potential therapeutic applications. Curr Gene Ther 5:375-385

    Article  PubMed  CAS  Google Scholar 

  44. Mitsui K, Tokuzawa Y, Itoh H et al (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631-642

    Article  PubMed  CAS  Google Scholar 

  45. Moosmann S, Hutter J, Moser C et al (2005) Milieu-adopted in vitro and in vivo differentiation of mesenchymal tissues derived from different adult human CD34-negative progenitor cell clones. Cells Tissues Organs 179:91-101

    Article  PubMed  CAS  Google Scholar 

  46. Nash R, Neves L, Faast R et al (2007) The lectin Dolichos biflorus agglutinin recognizes glycan epitopes on the surface of murine embryonic stem cells: a new tool for characterizing pluripotent cells and early differentiation. Stem Cells 25:974-982

    Article  PubMed  CAS  Google Scholar 

  47. Nguyen TH, Murakami A, Fujiki K et al (2002) Transferrin-polyethylenimine conjugate, FuGENE6 and TransIT-LT as nonviral vectors for gene transfer to the corneal endothelium. Jpn J Ophthalmol 46:140-146

    Article  PubMed  Google Scholar 

  48. Nichols J, Zevnik B, Anastassiadis K et al (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379-391

    Article  PubMed  CAS  Google Scholar 

  49. Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372-376

    Article  PubMed  CAS  Google Scholar 

  50. Niwa H (2007) How is pluripotency determined and maintained? Development 134:635-646

    Article  PubMed  CAS  Google Scholar 

  51. Ohtsuka S, Dalton S (2008) Molecular and biological properties of pluripotent embryonic stem cells. Gene Ther 15:74-81

    Article  PubMed  CAS  Google Scholar 

  52. Oliveri RS (2007) Epigenetic dedifferentiation of somatic cells into pluripotency: cellular alchemy in the age of regenerative medicine? Regen Med 2:795-816

    Article  PubMed  CAS  Google Scholar 

  53. Pankratz MT, Li XJ, Lavaute TM et al (2007) Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25:1511-1520

    Article  PubMed  CAS  Google Scholar 

  54. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143-147

    Article  PubMed  CAS  Google Scholar 

  55. Quarto R, Thomas D, Liang CT (1995) Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif Tissue Int 56:123-129

    Article  PubMed  CAS  Google Scholar 

  56. Reubinoff BE, Pera MF, Fong CY et al (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399-404

    Article  PubMed  CAS  Google Scholar 

  57. Salero E, Hatten ME (2007) Differentiation of ES cells into cerebellar neurons. Proc Natl Acad Sci U S A 104:2997-3002

    Article  PubMed  CAS  Google Scholar 

  58. Schuldiner M, Yanuka O, Itskovitz-Eldor J et al (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 97:11307-11312

    Article  PubMed  CAS  Google Scholar 

  59. Schulz LC, Ezashi T, Das P et al (2007) Human embryonic stem cells as models for trophoblast differentiation. Placenta 29(Suppl A):S10-S16

    PubMed  Google Scholar 

  60. Siemen H, Nix M, Endl E et al (2005) Nucleofection of human embryonic stem cells. Stem Cells Dev 14:378-383

    Article  PubMed  CAS  Google Scholar 

  61. Smith AG, Heath JK, Donaldson DD et al (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688-690

    Article  PubMed  CAS  Google Scholar 

  62. Solter D (2000) Mammalian cloning: advances and limitations. Nat Rev Genet 1:199-207

    Article  PubMed  CAS  Google Scholar 

  63. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147

    Article  PubMed  CAS  Google Scholar 

  64. Trounson A (2002) Human embryonic stem cells: mother of all cell and tissue types. Reprod Biomed Online 4(Suppl 1):58-63

    PubMed  CAS  Google Scholar 

  65. Urbach A, Schuldiner M, Benvenisty N (2004) Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22:635-641

    Article  PubMed  CAS  Google Scholar 

  66. Wang G, Zhang H, Zhao Y et al (2005) Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun 330:934-942

    Article  PubMed  CAS  Google Scholar 

  67. Wilmut I, Young L, Campbell KH (1998) Embryonic and somatic cell cloning. Reprod Fertil Dev 10:639-643

    Article  PubMed  CAS  Google Scholar 

  68. Yamaguchi M, Hirayama F, Murahashi H et al (2002) Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum. Cytotherapy 4:109-118

    Article  PubMed  CAS  Google Scholar 

  69. Young LE, Sinclair KD, Wilmut I (1998) Large offspring syndrome in cattle and sheep. Rev Reprod 3:155-163

    Article  PubMed  CAS  Google Scholar 

  70. Zavazava N (2003) Embryonic stem cells and potency to induce transplantation tolerance. Expert Opin Biol Ther 3:5-13

    Article  PubMed  CAS  Google Scholar 

  71. zur Nieden NI, Kempka G, Rancourt DE et al (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 5:1

    Article  PubMed  Google Scholar 

  72. Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319-321

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Handschel, J., Meyer, U., Wiesmann, H. (2009). Embryonic Stem Cell Use. In: Meyer, U., Handschel, J., Wiesmann, H., Meyer, T. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77755-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77755-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77754-0

  • Online ISBN: 978-3-540-77755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics