Skip to main content

Spatiotemporal Anomaly Detection in Gas Monitoring Sensor Networks

  • Conference paper
Wireless Sensor Networks (EWSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4913))

Included in the following conference series:

Abstract

In this paper, we use Bayesian Networks as a means for unsupervised learning and anomaly (event) detection in gas monitoring sensor networks for underground coal mines. We show that the Bayesian Network model can learn cyclical baselines for gas concentrations, thus reducing false alarms usually caused by flatline thresholds. Further, we show that the system can learn dependencies between changes of concentration in different gases and at multiple locations. We define and identify new types of events that can occur in a sensor network. In particular, we analyse joint events in a group of sensors based on learning the Bayesian model of the system, contrasting these events with merely aggregating single events. We demonstrate that anomalous events in individual gas data might be explained if considered jointly with the changes in other gases. Vice versa, a network-wide spatiotemporal anomaly may be detected even if individual sensor readings were within their thresholds. The presented Bayesian approach to spatiotemporal anomaly detection is applicable to a wide range of sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, P., Wang, X.R., Guo, Y., Gerasimov, V., Prokopenko, M., Fillon, O., Haustein, K., Rowan, G.: Anomaly detection in coal-mining sensor data, report 2: Feasibility study and demonstration. Technical Report 07/084, CSIRO, ICT Centre (2007)

    Google Scholar 

  2. Xue, W., Luo, Q., Chen, L., Liu, Y.: Contour map matching for event detection in sensor networks. In: Proceedings of the 2006 ACM SIGMOD international conference on Management of data, Chicago, IL, USA, pp. 145–156 (2006)

    Google Scholar 

  3. Ypma, A., Duin, R.P.W.: Novelty detection using self-organizing maps. In: Progress in Connectionist-Based Information Systems, vol. 2, pp. 1322–1325. Springer, London (1997)

    Google Scholar 

  4. Davy, M., Desobry, F., Gretton, A., Doncarli, C.: An online support vector machine for abnormal events detection. Signal Processing 86(8), 2009–2025 (2006)

    Article  Google Scholar 

  5. Mamei, M., Nagpal, R.: Macro programming through Bayesian Networks: Distributed inference and anomaly detection. In: PerCom 2007. Fifth Annual IEEE International Conference on Pervasive Computing and Communications, Los Alamitos, CA, USA, pp. 87–96 (2007)

    Google Scholar 

  6. Kumar, A.V.U.P., Reddy, A.M.V., Janakiram, D.: Distributed collaboration for event detection in wireless sensor networks. In: Proceedings of the 3rd international workshop on Middleware for pervasive and ad-hoc computing, pp. 1–8 (2005)

    Google Scholar 

  7. Jiao, B., Son, S.H., Stankovic, J.A.: GEM: Generic event service middleware for wireless sensor networks. In: Second International Workshop on Networked Sensing Systems (2005)

    Google Scholar 

  8. Friedman, N., Koller, D.: Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian Networks. Machine Learning 50, 95–126 (2003)

    Article  MATH  Google Scholar 

  9. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  10. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, New York (2001)

    MATH  Google Scholar 

  11. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  12. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45(9), 712–716 (1980)

    Article  Google Scholar 

  13. MacKay, D.J.: Information Theory, Learning and Inference. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  14. Myung, I.J.: Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology 47, 90–100 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)

    Article  MathSciNet  Google Scholar 

  16. Massey, F.J.: The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association 46(253), 68–78 (1951)

    Article  MATH  Google Scholar 

  17. Menzies, T., Allen, D., Orrego, A.: Bayesian anomaly detection. In: ICML 2006. Workshop on Machine learning Algorithms for Surveillance and Event Detection, PA, USA (June 2006)

    Google Scholar 

  18. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000)

    Article  Google Scholar 

  19. Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Detecting non-trivial computation in complex dynamics. In: Almeida e Costa, F., et al. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 895–904. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28(4), 2591–2593 (1983)

    Article  Google Scholar 

  21. Takens, F.: Detecting strange attractors in turbulence. Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Heidelberg (1981)

    Google Scholar 

  22. Takens, F.: Invariants related to dimension and entropy. In: Atas do 13 Colóquio Brasiliero do Matemática, Rio de Janeiro (1983)

    Google Scholar 

  23. Theiler, J.: Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A 34(3), 2427–2432 (1986)

    Article  Google Scholar 

  24. Dhamala, M., Lai, Y., Kostelich, E.: Analyses of transient chaotic time series. Phys. Rev. E 64(5), 56207–56216 (2001)

    Article  Google Scholar 

  25. Kugiumtzis, D., Lillekjendlie, B., Christophersen, N.: Chaotic time series part I: Estimation of some invariant properties in state space. Modeling, Identification and Control 15, 205–224 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Verdone

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X.R., Lizier, J.T., Obst, O., Prokopenko, M., Wang, P. (2008). Spatiotemporal Anomaly Detection in Gas Monitoring Sensor Networks. In: Verdone, R. (eds) Wireless Sensor Networks. EWSN 2008. Lecture Notes in Computer Science, vol 4913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77690-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77690-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77689-5

  • Online ISBN: 978-3-540-77690-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics