Skip to main content

Changes in Antibiotic Resistance Profile of Soil Bacterial Community in Association with Land Degradation

  • Chapter
  • 1935 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht SL, Okon Y, Lonnquist J, Burton RH (1981) Nitrogen fixation by corn-Azospirillumassociation in a temperate climate. Crop Sci 21:301–306

    Google Scholar 

  • Alvim PT, Rosand FPC (1974) Um novo sistema de representação grafica da fertilidade de solos para cacau. Cacau Atualidades 11:2–6

    Google Scholar 

  • Beare MH, Coleman DC, Crossley, DA Jr, Hendrix PF, Odum EP (1995) A hierarchical approach to evaluating the significance of soil biodivesity to biogeochemical cycling. Plant Soil 170:5–22

    Article  Google Scholar 

  • Bengtsson G, Fossum A, Lindqvist R (2004) Persistence of plasmid RP4 in Pseudomonas putida and loss of its expression of antibiotic resistance∈dex in a groundwater microcosm. Soil Biol Biochem 36:999–1008

    Article  Google Scholar 

  • BÖckelmann U, Szewzyk U, Grohmann E (2003) A new enzymatic method for the detachment of particle associated soil bacteria. J Microbiol Methods 55:201–211

    Article  Google Scholar 

  • Brönstad K, Drönen K, Øvreas L, Torsvik V (1996) Phenotypic diversity and antibiotic resistance∈dexantibiotic resistance in soil bacterial communities. J Ind Microbiol 17:253–259

    Article  Google Scholar 

  • Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Systemat 6:51–71

    Article  Google Scholar 

  • Cronin D, Moënne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F (1997) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiol Ecol 23:95–106

    Article  Google Scholar 

  • Cuenca G, Meneses E (1996) Diversity patterns of arbuscular mycorrhizal fungi associated with cacao in Venezuela. Plant Soil 183:315–322

    Article  Google Scholar 

  • Davis IJ, Roberts AP, Ready D, Richards H, Wilson M, Mullany P (2005) Linkage of a novel mercury resistance operon with streptomycin resistance on a conjugative plasmid in Enterococcus faecium. Plasmid 54:26–38

    Google Scholar 

  • Derylo M, Skorupska A (1992) Rhizobial siderophore as an iron source for clover. Physiol Plant 85:549–553

    Article  Google Scholar 

  • Doi R (2004) Soil bacterial community profiling with Biolog kinetic and antibiotic resistance most probable number approaches showed multidimensionality of land degradation. Int J Agri Bio 6:284–288

    Google Scholar 

  • Doi R, Sakurai K (2003) Soil environmental factors relating to diversity of culturable soil bacterial communities in the Sakaerat Environmental Research Station, Thailand. Tropics 12:185–200

    Google Scholar 

  • Doi R, Sakurai K (2004) Principal components derived from soil physico-chemical data explained a land degradation gradient, and suggested the applicability of new indexes for estimation of soil productivity in the Sakaerat Environmental Research Station, Thailand. Int J Sustain Dev World Ecol 11:298–311

    Google Scholar 

  • Doi R, Sahunalu P, Wachrinrat C, Teejuntuk S, Sakurai K (2004) Changes in soil bacterial community profile associated with deforestation in the Sakaerat Environmental Research Station, Thailand: comparisons between soils at the original forest and bare ground. Tropics 14:39–53

    Google Scholar 

  • Doyle JD, Stotzky G (1993) Methods for the detection of changes in the microbial ecology of soil caused by the introduction of microorganisms. Microb Releases 2:63–72

    Google Scholar 

  • Eden MJ, Parry JT (1996) Land degradation in the tropics: environmental and policy issues. Global Development and the Environment series, Pinter, London, UK

    Google Scholar 

  • FAO/UNESCO (1979) Soil map of the world. IX, Southeast Asia, UNESCO, Paris, France

    Google Scholar 

  • Fenchel T, King G, Blackburn H (1998) Bacterial biogeochemistry: the ecophysiology of mineral cycling. Academic Press, London, UK

    Google Scholar 

  • Francl LJ (1993) Multivariate analysis of selected edaphic factors and their relationship to Heterodera glycines population density. J Nematol 25:270–276

    Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial comunities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    Google Scholar 

  • Fujie K, Hu HY, Tanaka H, Urano K, Saitou K, Katayama A (1998) Analysis of respiratory quinones in soil for characterization of microbiota. Soil Sci Plant Nutr 44:393–404

    Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    Google Scholar 

  • Giuffre L, Piccolo G, Rosell R, Pascale C, Heredia OS, Ciarlo E (2001) Anthropogenic effect on soil organic phosphorus fractions in tropical ecosystems. Commun Soil Sci Plant Anal 32:1621–1628

    Article  Google Scholar 

  • Gottlieb S (1976) The production and role of antibiotics in soil. J Antibiot 29:987–1000

    Google Scholar 

  • Handman H, Weller DM, Thomashow LS (1991) Relative importance of fluorecent siderphores and other factors in biological control of Gaeumannomyces graminis var.triticiby Pseudomonas fluorecens2–79 and M4-80R. Appl Environ Microbiol 57:3270–3277

    Google Scholar 

  • Hemerik L, Brussaard L (2002) Diversity of soil macro-invertebrates in grasslands under restoration succession. Eur J Soil Biol 38:145–150

    Article  Google Scholar 

  • Jha DK, Sharma GD, Mishra RR (1992) Soil microbial population numbers and enzyme activities in relation to altitude and forest degradation. Soil Biol Biochem 24:761–767

    Article  Google Scholar 

  • Johansen A, Knudsen IMB, Binnerup SJ, Winding A, Johansen JE, Jensen LE, Andersen KS, Svenning MM, Bonde TA (2005) Non-target effects of the microbial control agents Pseudomonas fluorescensDR54 and Clonostachys rosea IK726 in soils cropped with barley followed by sugar beet: a greenhouse assessment. Soil Biol Biochem 37:2225-2239

    Article  Google Scholar 

  • Kaeoniam P, Khoorat P, Sunthornsan W, Issareeya M, Cherdchun C, Buachum W (1976) A study of illegal deforestation in the reserved forest area at the Sakaerat Environmental Research Station. Environmental and Ecological Research Department, Applied Scientific Research Corporation of Thailand, Bangkok, Thailand

    Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  • Kanzaki M, Yoda K, Dhanmanonda K (1995) Mosaic structure and tree growth pattern in a monodomoionant tropical seasonal evergreen forest in Thailand. In: Box EO, Peet RK, Masuzawa E, Yamada I, Fujiwara K, Maycosk PF (eds) Vegetation science in forestry. Kluwer Publishers, Netherlands, pp 495–513

    Google Scholar 

  • Kay E, Vogel TM, Bertolla F, Nalin F, Simonet P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microbiol 68:3345–3351

    Article  Google Scholar 

  • Kilbertus G, Proth J (1979) Effets de la dessiccation dur les bacteries gram-negatives d’un sol. Soil Biol Biochem 11:109–114

    Article  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  Google Scholar 

  • Köppen W (1931) Grundriss der Klimakunde. De Druiter, Berlin, Germany

    Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Häggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905

    Article  Google Scholar 

  • Lawton JH (1994) What do species do in ecosystems? Oikos 71:367–374

    Article  Google Scholar 

  • Lorian V (1996) Antibiotics in laboratory medicine, 4th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Lu D, Moran E, Mausel P (2002) Linking Amazonian secondary succession forest growth to soil properties. Land Degrad Dev 13:331–343

    Article  Google Scholar 

  • MacMillan DC (1991) Predicting the general yield class of Sitka spruce on better quality land in Scotland. Forestry 64:359–372

    Article  Google Scholar 

  • McInroy JA, Musson G, Wei G, Klopper JW (1996) Masking of antibiotic-resistance upon recovery of endophytic bacteria. Plant Soil 186:213–218

    Article  Google Scholar 

  • Moran EF, Brond´zio ES, Tucker JM, Da Silva-Forsberg MC, McCracken SD, Falesi I (2000) Effects of soil fertility and land use on forest succession in Amaônia. For Ecol Man 139:93–108

    Article  Google Scholar 

  • Neitko KF, Frankenberg WT (1989) Biosynthesis of cytokinins in soil. Soil Sci Soc Am J 53:735–740

    Google Scholar 

  • Oline DK, Grant MC (2002) Scaling patterns of biomass and soil properties: an empirical analysis. Landsc Ecol 17:13–26

    Article  Google Scholar 

  • Pérez-de-Mora A, Burgos P, Madejón E, Cabrera F, Jaeckel P, Schloter M (2006) Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol Biochem 38:327–341

    Google Scholar 

  • Pillai SD, Pepper IL (1991) Transposon Tn5 as an identifiable marker in rhizobia: survival and genetic stability of Tn5 mutant bean rhizobia under temperature stressed conditions in desert soils. Microbial Ecol 21:21–33

    Article  Google Scholar 

  • Pote J, Ceccherini MT, Van VT, Rosselli W, Wildi W, Simonet P, Vogel TM (2003) Fate and transport of antibiotic resistance∈dexantibiotic resistance genes in saturated soil columns. Eur J Soil Biol 39:65–71

    Article  Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles – a critique. FEMS Microbiol Ecol 42:1–14

    Google Scholar 

  • Quentmeier A, Friedrich CG (1994) Transfer and expression of degradative and antibiotic resistance plasmids in acidophilic bacteria. Appl Environ Microbiol 60:973–978

    Google Scholar 

  • Rahal JJ, Urban C, Horn D, Freeman K, SegalMaurer S, Maurer J, Mariano N, Marks S, Burns JM, Dominick D, Lim M (1998) Glass restriction of cephalosporin use to control total cephalosporin resistance in Nosocomial klebsiella. J Am Med Assoc 280:1233–1237

    Article  Google Scholar 

  • Ramos MLG, Magalhanes NFM, Boddey RM (1987) Native and inoculated rhizobia isolated from field grown Phaseolus vulgaris: effects of liming an acid soil on antibiotic resistance. Soil Biol Biochem 19:179–185

    Article  Google Scholar 

  • Rensing C, Newby DT, Pepper IL (2002) The role of selective pressure and selfish DNA in horizontal gene transfer and soil microbial community adaptation. Soil Biol Biochem 34:285–296

    Article  Google Scholar 

  • Roane TM, Kellogg ST (1996) Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol 42:593–603

    Google Scholar 

  • Sahunalu P, Dhanmanonda P (1995) Structure and dynamics of dry dipterocarp forest, Sakaerat, northeastern Thailand. In: Box EO, Peet RK, Masuzawa E, Yamada I, Fujiwara K, Maycosk PF (eds) Vegetation science in forestry. Kluwer Publishers, Netherlands, pp 465–494

    Google Scholar 

  • Sakurai K, Tanaka S, Ishizuka S, Kanzaki M (1998) Differences in soil properties of dry evergreen and dry deciduous forests in the Sakaerat Environmental Research Station. Tropics 8:61–80

    Article  Google Scholar 

  • Schmitt H, Haapakangas H, van Beelen P (2005) Effects of antibiotics on soil microorganisms: time and nutrients influence pollution-induced community tolerance. Soil Biol Biochem 37:1882–1892

    Article  Google Scholar 

  • Shrivastava R, Upreti RK, Jain SR, Prasad KN, Seth PK, Chaturvedi UC (2004) Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa.Ecotoxicol Enviorn Saf 58:277–283

    Article  Google Scholar 

  • Smalla K, Heuer H, Götz A, Niemeyer D, Krögerrecklenfort E, Tietze E (2000) Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-Like plasmids. Appl Environ Microbiol 66:4854–4862

    Article  Google Scholar 

  • Stevenson IL (1954) Antibiotic production by actinomycetes in soil demonstrated by morphological changes induced in Helminthosporium sativam. Nature 174:598–599

    Article  Google Scholar 

  • Stott P (1984) The savanna forests of mainland southeast Asia: an ecological survey. Prog Phys Geogr 8:315–335

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) Canoco reference manual and user’s guide to Canoco for windows: software for canonical community ordination (vesion 4), Microcomputer Power, Ithaca, NY

    Google Scholar 

  • Tunlid A, White DC (1992) Biochemical analysis of biomass, community structure, nutritional status and metabolic activity of microbial communities in soil. In: Stotzky G, Bollag JM (eds) Soil biochemistry, vol. 7. Marcel Dekker, New York, pp 229–262

    Google Scholar 

  • van Straalen NM (2002) Assessment of soil contamination-a functional perspective. Biodegradation 13:41–52

    Article  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    Article  Google Scholar 

  • Wali MK (1999) Ecological succession and the rehabilitation of disturbed terrestrial ecosystem. Plant Soil 213:195–220

    Article  Google Scholar 

  • Westover KN, Kennedy AC, Kelly SE (1997) Patterns of rhizosphere microbial community structure associated with co-occurring plant species. J Ecol 85:863–873

    Article  Google Scholar 

  • Widmer F, Flie$β $bach A, Laczkó E, Shulze-Aurich J, Zeyer J (2001) Assessing soil biological characteristics: a comparison of bulk soil community DNA-, PLFA, and BiologTM-analyses. Soil Biol Biochem 33:1029–1036

    Article  Google Scholar 

  • Wren AB, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can J Microbiol 42:252–258

    Article  Google Scholar 

  • Wu T, Chelleni DO, Graham JH Martin KJ, Rosskopf EN (2008) Comparison of soil baterial communities under diverse agricultural land management and crop production pratices. Microb Ecol 55:293–310

    Article  Google Scholar 

  • Yang CH, Crowley DE, Menge JA (2001) 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and phytophthora infected avocado roots. FEMS Microbiol Ecol 35:129–136

    Article  Google Scholar 

  • Yemefack M, Jetten VG, Rossiter DG (2006) Developing a minimum data set for characterizing soil dynamics in shifting cultivation systems. Soil Tillage Res 86:84–98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doi, R., Kaeoniam, P., Placksanoi, J., Sewakhonburi, S., Jiraphong, J. (2008). Changes in Antibiotic Resistance Profile of Soil Bacterial Community in Association with Land Degradation. In: Huang, Q., Huang, P.M., Violante, A. (eds) Soil Mineral Microbe-Organic Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77686-4_13

Download citation

Publish with us

Policies and ethics