Skip to main content

Molecular Recognition Force Microscopy: From Simple Bonds to Complex Energy Landscapes

  • Chapter
Nanotribology and Nanomechanics

Abstract

Atomic force microscopy (AFM), developed in the late eighties to explore atomic details on hard material surfaces, has evolved to an imaging method capable of achieving fine structural details on biological samples. Its particular advantage in biology is that the measurements can be carried out in aqueous and physiological environment, which opens the possibility to study the dynamics of biological processes in vivo. The additional potential of the AFM to measure ultra-low forces at high lateral resolution has paved the way for measuring inter- and intra-molecular forces of bio-molecules on the single molecule level. Molecular recognition studies using AFM open the possibility to detect specific ligand–receptor interaction forces and to observe molecular recognition of a single ligand–receptor pair. Applications include biotin–avidin, antibody–antigen, NTA nitrilotriacetate–hexahistidine 6, and cellular proteins, either isolated or in cell membranes. The general strategy is to bind ligands to AFM tips and receptors to probe surfaces (or vice versa), respectively. In a force–distance cycle, the tip is first approached towards the surface whereupon a single receptor–ligand complex is formed, due to the specific ligand receptor recognition. During subsequent tip–surface retraction a temporarily increasing force is exerted to the ligand–receptor connection thus reducing its lifetime until the interaction bond breaks at a critical force (unbinding force). Such experiments allow for estimation of affinity, rate constants, and structural data of the binding pocket. Comparing them with values obtained from ensemble-average techniques and binding energies is of particular interest. The dependences of unbinding force on the rate of load increase exerted to the receptor–ligand bond reveal details of the molecular dynamics of the recognition process and energy landscapes. Similar experimental strategies were also used for studying intra-molecular force properties of polymers and unfolding–refolding kinetics of filamentous proteins. Recognition imaging, developed by combing dynamic force microscopy with force spectroscopy, allows for localization of receptor sites on surfaces with nanometer positional accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, C.F. Quate, Ch. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  2. G.U. Lee, D.A. Kidwell, R.J. Colton: Sensing discrete streptavidin–biotin interactions with atomic force microscopy, Langmuir 10, 354–357 (1994)

    Article  CAS  Google Scholar 

  3. E.L. Florin, V.T. Moy, H.E. Gaub: Adhesion forces between individual ligand receptor pairs, Science 264, 415–417 (1994)

    Article  CAS  Google Scholar 

  4. P. Hinterdorfer, W. Baumgartner, H.J. Gruber, K. Schilcher, H. Schindler: Detection and localization of individual antibody–antigen recognition events by atomic force microscopy, Proc. Natl. Acad. Sci. U.S.A. 93, 3477–3481 (1996)

    Article  CAS  Google Scholar 

  5. M. Grandbois, W. Dettmann, M. Benoit, H.E. Gaub: How strong is a covalent bond, Science 283, 1727–1730 (1999)

    Article  CAS  Google Scholar 

  6. G.U. Lee, A.C. Chrisey, J.C. Colton: Direct measurement of the forces between complementary strands of DNA, Science 266, 771–773 (1994)

    Article  CAS  Google Scholar 

  7. T. Boland, B.D. Ratner: Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy, Proc. Natl. Acad. Sci. USA 92, 5297–5301 (1995)

    Article  CAS  Google Scholar 

  8. P. Wagner, M. Hegner, P. Kernen, F. Zaugg, G. Semenza: Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self assembled monolayers for mscanning probe microscopy, Biophys. J 70, 2052–2066 (1996)

    CAS  Google Scholar 

  9. U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.-J. Güntherodt, G.M. Misevic: Binding strength between cell adhesion proteoglycans measured by atomic force microscopy, Science 267, 1173–1175 (1995)

    Article  CAS  Google Scholar 

  10. U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, H.J. Güntherodt, W. Huber: Specific antigen/antibody interactions measured by force microscopy, Biophys. J. 70, 2437–2441 (1996)

    CAS  Google Scholar 

  11. Y. Harada, M. Kuroda, A. Ishida: Specific and quantized antibody–antigen interaction by atomic force microscopy, Langmuir 16, 708–715 (2000)

    Article  CAS  Google Scholar 

  12. P. Hinterdorfer, K. Schilcher, W. Baumgartner, H.J. Gruber, H. Schindler: A mechanistic study of the dissociation of individual antibody–antigen pairs by atomic force microscopy, Nanobiology 4, 39–50 (1998)

    Google Scholar 

  13. S. Allen, X. Chen, J. Davies, M.C. Davies, A.C. Dawkes, J. C. Edwards, C.J. Roberts, J. Sefton, S.J.B. Tendler, P.M. Williams: Spatial mapping of specific molecular recognition sites by atomic force microscopy, Biochem. 36, 7457–7463 (1997)

    Article  CAS  Google Scholar 

  14. R. Ros, F. Schwesinger, D. Anselmetti, M. Kubon, R. Schäfer, A. Plückthun, L. Tiefenauer: Antigen binding forces of individually addressed single-chain Fv antibody molecules, Proc. Natl. Acad. Sci. USA 95, 7402–7405 (1998)

    Article  CAS  Google Scholar 

  15. T. Strunz, K. Oroszlan, R. Schäfer, H.-G. Güntherodt: Dynamic force spectroscopy of single DNA molecules, Proc. Natl. Acad. Sci. USA 96, 11277–11282 (1999)

    Article  CAS  Google Scholar 

  16. S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, C. M. Lieber: Covalently functionalyzed nanotubes as nanometre-sized probes in chemistry and biology, Nature 394, 52–55 (1998)

    Article  CAS  Google Scholar 

  17. P. Hinterdorfer, F. Kienberger, A. Raab, H.J. Gruber, W. Baumgartner, G. Kada, C. Riener, S. Wielert-Badt, C. Borken, H. Schindler: Poly(ethylene glycol): An ideal spacer for molecular recognition force microscopy/spectroscopy, Single Mol. 1, 99–103 (2000)

    Article  CAS  Google Scholar 

  18. Th. Haselgrübler, A. Amerstorfer, H. Schindler, H.J. Gruber: Synthesis and applications of a new poly(ethylene glycol) derivative for the crosslinking of amines with thiols, Bioconjugate Chem. 6, 242–248 (1995)

    Article  Google Scholar 

  19. C.K. Riener, G. Kada, C. Borken, F. Kienberger, P. Hinterdorfer, H. Schindler, G.J. Schütz, T. Schmidt, C.D. Hahn, H.J. Gruber: Bioconjugation for biospecific detection of single molecules in atomic force microscopy (AFM) and in single dye tracing (SDT), Recent Res. Devel. Bioconj. Chem. 1, 133–149 (2002)

    CAS  Google Scholar 

  20. A. Raab, W. Han, D. Badt, S.J. Smith-Gill, S.M. Lindsay, H. Schindler, P. Hinterdorfer: Antibody recognition imaging by force microscopy, Nature Biotech. 17, 902–905 (1999)

    CAS  Google Scholar 

  21. M. Conti, G. Falini, B. Samori: How strong is the coordination bond between a histidine tag and Ni-Nitriloacetate? An experiment of mechanochemistry on single molecules, Angew. Chem. 112, 221–224 (2000)

    Article  Google Scholar 

  22. F. Kienberger, G. Kada, H.J. Gruber, V.Ph. Pastushenko, C. Riener, M. Trieb, H.-G. Knaus, H. Schindler, P. Hinterdorfer: Recognition force spectroscopy studies of the NTA-His6 bond, Single Mol. 1, 59–65 (2000)

    Article  CAS  Google Scholar 

  23. L. Schmitt, M. Ludwig, H.E. Gaub, R. Tampé: A metal-chelating microscopy tip as a new toolbox for single-molecule experiments by atomic force microscopy, Biophys. J. 78, 3275–3285 (2000)

    CAS  Google Scholar 

  24. C. Yuan, A. Chen, P. Kolb, V.T. Moy: Energy landscape of avidin–biotin complexes measured by atomic force microscopy, Biochemistry 39, 10219–10223 (2000)

    Article  CAS  Google Scholar 

  25. W. Han, S.M. Lindsay, M. Dlakic, R.E. Harrington: Kinked DNA, Nature 386, 563 (1997)

    Article  CAS  Google Scholar 

  26. G. Kada, L. Blaney, L.H. Jeyakumar, F. Kienberger, V.Ph. Pastushenko, S. Fleischer, H. Schindler, F.A. Lai, P. Hinterdorfer: Recognition force microscopy/spectroscopy of ion channels: Applications to the skeletal muscle Ca2+ release channel (RYR1), Ultramicroscopy 86, 129–137 (2001)

    Article  CAS  Google Scholar 

  27. D.J. Müller, W. Baumeister, A. Engel: Controlled unzipping of a bacterial surface layer atomic force microscopy, Proc. Natl. Acad. Sci. USA 96, 13170–13174 (1999)

    Article  Google Scholar 

  28. F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H.E. Gaub, D.J. Müller: Unfolding pathways of individual bacteriorhodopsins, Science 288, 143–146 (2000)

    Article  CAS  Google Scholar 

  29. E. Kiss, C.-G. Gölander: Chemical derivatization of muscovite mica surfaces, Coll. Surf. 49, 335–342 (1990)

    Article  CAS  Google Scholar 

  30. S. Karrasch, M. Dolder, F. Schabert, J. Ramsden, A. Engel: Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution, Biophys. J. 65, 2437–2446 (1993)

    CAS  Google Scholar 

  31. N.H. Thomson, B.L. Smith, N. Almquist, L. Schmitt, M. Kashlev, E.T. Kool, P.K. Hansma: Oriented, active escherichia coli RNA polymerase: An atomic force microscopy study, Biophys. J. 76, 1024–1033 (1999)

    CAS  Google Scholar 

  32. G. Kada, C.K. Riener, P. Hinterdorfer, F. Kienberger, C.M. Stroh, H.J. Gruber: Dithio-phospholipids for biospecific immobilization of proteins on gold surfaces, Single Mol. 3, 119–125 (2002)

    Article  CAS  Google Scholar 

  33. C. LeGrimellec, E. Lesniewska, M.C. Giocondi, E. Finot, V. Vie, J.P. Goudonnet: Imaging of the surface of living cells by low-force contact-mode atomic force microscopy, Biophys. J. 75(2), 695–703 (1998)

    CAS  Google Scholar 

  34. K. Schilcher, P. Hinterdorfer, H.J. Gruber, H. Schindler: A non-invasive method for the tight anchoring of cells for scanning force microscopy, Cell. Biol. Int. 21, 769–778 (1997)

    Article  CAS  Google Scholar 

  35. S. Wielert-Badt, P. Hinterdorfer, H.J. Gruber, J.- T. Lin, D. Badt, H. Schindler, R.K.-H. Kinne: Single molecule recognition of protein binding epitopes in brush border membranes by force microscopy, Biophys. J. 82, 2767–2774 (2002)

    CAS  Google Scholar 

  36. P. Bongrand, C. Capo, J.-L. Mege, A.-M. Benoliel: Use of Hydrodynamic Flows to Study Cell Adhesion, ed. by P. Bongrand (CRC, Boca Raton, Florida 1988) pp.125–156

    Google Scholar 

  37. J.N. Israelachvili: Intermolecular and Surface Forces, 2nd edn. (Academic Press, London & New York 1991) p.2

    Google Scholar 

  38. R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans: Energy landscapes of receptor-ligand bonds explored by dynamic force spectroscopy, Nature 397, 50–53 (1999)

    Article  CAS  Google Scholar 

  39. A. Askin: Optical trapping and manipulation of neutral particles using lasers, Proc. Natl. Acad. Sci. USA 94, 4853–4860 (1997)

    Article  Google Scholar 

  40. K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block: Direct observation of kinesin stepping by optical trapping interferometry, Nature 365, 721–727 (1993)

    Article  CAS  Google Scholar 

  41. S. Smith, Y. Cui, C. Bustamante: Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules, Science 271, 795–799 (1996)

    Article  CAS  Google Scholar 

  42. M.S.Z. Kellermayer, S.B. Smith, H.L. Granzier, C. Bustamante: Folding–unfolding transitions in single titin molecules characterized with laser tweezwers, Sience 276, 1112–1216 (1997)

    CAS  Google Scholar 

  43. T.R. Strick, J.F. Allemend, D. Bensimon, A. Bensimon, V. Croquette: The elasticity of a single supercoiled DNA molecule, Biophys. J. 271, 1835–1837 (1996)

    CAS  Google Scholar 

  44. F. Kienberger, V.Ph. Pastushenko, G. Kada, H.J. Gruber, C. Riener, H. Schindler, P. Hinterdorfer: Static and dynamical properties of single poly(ethylene glycol) molecules investigated by force spectroscopy, Single Mol. 1, 123–128 (2000)

    Article  CAS  Google Scholar 

  45. S. Liang, D. Medich, D.M. Czajkowsky, S. Sheng, J.-Y. Yuan, Z. Shao: Thermal noise reduction of mechanical oscillators by actively controlled external dissipative forces, Ultramicroscopy 84, 119–125 (2000)

    Article  CAS  Google Scholar 

  46. M.B. Viani, T.E. Schäffer, A. Chand, M. Rief, H.E. Gaub, P.K. Hansma: Small cantilevers for force spectroscopy of single molecules, J. Appl. Phys. 86, 2258–2262 (1999)

    Article  CAS  Google Scholar 

  47. T. Strunz, K. Oroszlan, I. Schumakovitch, H.-G. Güntherodt, M. Hegner: Model energy landscapes and the force-induced dissociation of ligand–receptor bonds, Biophys. J. 79, 1206–1212 (2000)

    CAS  Google Scholar 

  48. H. Grubmüller, B. Heymann, P. Tavan: Ligand binding: Molecular mechanics calculation of the streptavidin-biotin rupture force, Science 271, 997–999 (1996)

    Article  Google Scholar 

  49. G.I. Bell: Models for the specific adhesion of cells to cells, Science 200, 618–627 (1978)

    Article  CAS  Google Scholar 

  50. E. Evans, K. Ritchie: Dynamic strength of molecular adhesion bonds, Biophys. J. 72, 1541–1555 (1997)

    CAS  Google Scholar 

  51. E. Evans, K. Ritchie: Strength of a weak bondconnecting flexible polymer chains, Biophys. J. 76, 2439–2447 (1999)

    CAS  Google Scholar 

  52. J. Fritz, A.G. Katopidis, F. Kolbinger, D. Anselmetti: Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy, Proc. Natl. Acad. Sci. USA 95, 12283–12288 (1998)

    Article  CAS  Google Scholar 

  53. T. Auletta, M.R. de Jong, A. Mulder, F.C.J.M. van Veggel, J. Huskens, D.N. Reinhoudt, S. Zou, S. Zapotocny, H. Schönherr, G.J. Vancso, L. Kuipers: β-cyclodextrin host-guest complexes probed under thermodynamic equilibrium: Thermodynamics and force spectroscopy, J. Am. Chem. Soci. 126, 1577–1584 (2004)

    Article  CAS  Google Scholar 

  54. V.T. Moy, E.-L. Florin, H.E. Gaub: Adhesive forces between ligand and receptor measured by AFM, Science 266, 257–259 (1994)

    Article  CAS  Google Scholar 

  55. A. Chilkoti, T. Boland, B. Ratner, P.S. Stayton: The relationship between ligand-binding thermodynamics and protein-ligand interaction forces measured by atomic force microscopy, Biophys. J. 69, 2125–2130 (1995)

    CAS  Google Scholar 

  56. I. Schumakovitch, W. Grange, T. Strunz, P. Bertoncini, H.-J. Güntherodt, M. Hegner: Temperature dependence of unbinding forces between complementary DNA strands, Biophys. J. 82, 517–521 (2002)

    Article  CAS  Google Scholar 

  57. W. Baumgartner, P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, D. Drenckhahn: Cadherin interaction probed by atomic force microscopy, Proc. Natl. Acad. Sci. USA 8, 4005–4010 (2000)

    Article  Google Scholar 

  58. F. Schwesinger, R. Ros, T. Strunz, D. Anselmetti, H.-J. Güntherodt, A. Honegger, L. Jermutus, L. Tiefenauer, A. Plückthun: Unbinding forces of single antibody–antigen complexes correlate with their thermal dissociation rates, Proc. Natl. Acad. Sci. USA 29, 9972–9977 (2000)

    Article  Google Scholar 

  59. A.F. Oberhauser, P.K. Hansma, M. Carrion-Vazquez, J.M. Fernandez: Stepwise unfolding of titin under force-clamp atomic force microscopy, Proc. Natl. Acad. Sci. USA 16, 468–472 (2000)

    Google Scholar 

  60. S. Izraelev, S. Stepaniants, M. Balsera, Y. Oono, K. Schulten: Molecular dynamics study of unbinding of the avidin–biotin complex, Biophys. J. 72, 1568–1581 (1997)

    Google Scholar 

  61. M. Rief, F. Oesterhelt, B. Heyman, H.E. Gaub: Single molecule force spectroscopy on polysaccharides by atomic force microscopy, Science 275, 1295–1297 (1997)

    Article  CAS  Google Scholar 

  62. E. Evans, E. Leung, D. Hammer, S. Simon: Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force, Proc. Natl. Acad. Sci. USA 98, 3784–3789 (2001)

    Article  CAS  Google Scholar 

  63. X. Zhang, E. Woijcikiewicz, V.T. Moy: Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction, Biophys. J. 83, 2270–2279 (2002)

    CAS  Google Scholar 

  64. B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, Z. Zhu: Direct observation of catch bonds involving cell adhesion molecules, Nature 423, 190–193 (2003)

    Article  CAS  Google Scholar 

  65. B. Heymann, H. Grubmüller: Molecular dynamics force probe simulations of antibody/antigen unbinding: Entropic control and non additivity of unbinding forces, Biophys. J. 81, 1295–1313 (2001)

    CAS  Google Scholar 

  66. R. Nevo, C. Stroh, F. Kienberger, D. Kaftan, V. Brumfeld, M. Elbaum, Z. Reich, P. Hinterdorfer: A molecular switch between two bound states in the RanGTP-importinβ1 interaction, Nat. Struct. & Mol. Biol. 10, 553–557 (2003)

    Article  CAS  Google Scholar 

  67. R. Nevo, V. Brumfeld, M. Elbaum, P. Hinterdorfer, Z. Reich: Direct discrimination between models of protein activation by single-molecule force measurements, Biophys. J. 87, 2630–2634 (2004)

    Article  CAS  Google Scholar 

  68. R. Zwanzig: Diffusion in a rough potential, Proc. Natl. Acad. Sci. USA 85:, 2029–2030 (1988)

    Article  Google Scholar 

  69. C.B. Hyeon, D. Thirumalai: Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments?, Proc. Natl. Acad. Sci. USA 100, 10249–10253 (2003)

    Article  CAS  Google Scholar 

  70. R. Nevo, V. Brumfeld, P. Hinterdorfer, Z. Reich: Direct measurement of protein energy landscape roughness, EMBO Rep. 6, 482–486 (2005)

    Article  CAS  Google Scholar 

  71. P.P. Lehenkari, M.A. Horton: Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy, Biochem. Biophys. Res. Com. 259, 645–650 (1999)

    Article  CAS  Google Scholar 

  72. A. Chen, V.T. Moy: Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion, Biophys. J. 78, 2814–2820 (2000)

    CAS  Google Scholar 

  73. G. Pfister, C.M. Stroh, H. Perschinka, M. Kind, M. Knoflach, P. Hinterdorfer, G. Wick: Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy, J. Cell. Sci. 118, 1587–1594 (2005)

    Article  CAS  Google Scholar 

  74. T. Puntheeranurak, L. Wildling, H.J. Gruber, R.K.H. Kinne, P. Hinterdorfer: Ligands on the string: Single molecule studies on the interaction of antibodies and substrates with the surface of the Na+-glucose cotransporter SGLT1 in vivo, J. Cell Sci., in press

    Google Scholar 

  75. M. Ludwig, W. Dettmann, H.E. Gaub: Atomic force microscopy imaging contrast based on molecuar recognition, Biophys. J. 72, 445–448 (1997)

    CAS  Google Scholar 

  76. P.P. Lehenkari, G.T. Charras, G.T. Nykänen, M.A. Horton: Adapting force microscopy for cell biology, Ultramicroscopy 82, 289–295 (2000)

    Article  CAS  Google Scholar 

  77. N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, R. Lal: Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties, Biophys. J. 86, 1753–1762 (2004)

    CAS  Google Scholar 

  78. M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, H.E. Gaub: Affinity imaging of red blood cells using an atomic force microscope, J. Histochem. Cytochem. 48, 719–724 (2000)

    CAS  Google Scholar 

  79. O.H. Willemsen, M.M.E. Snel, K.O. van der Werf, B.G. de Grooth, J. Greve, P. Hinterdorfer, H.J. Gruber, H. Schindler, Y. van Kyook, C.G. Figdor: Simultaneous height and adhesion imaging of antibody antigen interactions by atomic force microscopy, Biophys. J. 57, 2220–2228 (1998)

    Google Scholar 

  80. B.V. Viani, L.I. Pietrasanta, J.B. Thompson, A. Chand, I.C. Gebeshuber, J.H. Kindt, M. Richter, H.G. Hansma, P.K. Hansma: Probing protein–protein interactions in real time, Nature Struct. Biol. 7, 644–647 (2000)

    Article  CAS  Google Scholar 

  81. W. Han, S.M. Lindsay, T. Jing: A magnetically driven oscillating probe microscope for operation in liquid, Appl. Phys. Lett. 69, 1–3 (1996)

    Article  Google Scholar 

  82. C.M. Stroh, A. Ebner, M. Geretschläger, G. Freudenthaler, F. Kienberger, A.S.M. Kamruzzahan, S.J. Smith-Gill, H.J. Gruber, P. Hinterdorfer: Simultaneous topography and recognition imaging using force microscopy, Biophys. J. 87, 1981–1990 (2004)

    Article  CAS  Google Scholar 

  83. C. Stroh, H. Wang, R. Bash, B. Ashcroft, J. Nelson, H.J. Gruber, D. Lohr, S.M. Lindsay, P. Hinterdorfer: Single-molecule recognition imaging microscope, Proc. Natl. Acad. Sci. 101, 12503–12507 (2004)

    Article  CAS  Google Scholar 

  84. A. Ebner, F. Kienberger, G. Kada, C.M. Stroh, M. Geretschläger, A.S.M. Kamruzzahan, L. Wildling, W.T. Johnson, B. Ashcroft, J. Nelson, S.M. Lindsay, H.J. Gruber, P. Hinterdorfer: Localization of single avidin biotin interactions using simultaneous topography and molecular recognition imaging, Chem. Phys. Chem. 6, 897–900 (2005)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hinterdorfer, P., Reich, Z. (2008). Molecular Recognition Force Microscopy: From Simple Bonds to Complex Energy Landscapes. In: Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77608-6_7

Download citation

Publish with us

Policies and ethics