Skip to main content

Structural, Nanomechanical, and Nanotribological Characterization of Human Hair Using Atomic Force Microscopy and Nanoindentation

  • Chapter
Book cover Nanotribology and Nanomechanics

Abstract

Human hair is a nanocomposite biological fiber. Maintaining the health, feel, shine, color, softness, and overall aesthetics of the hair is highly desired. Hair care products such as shampoos and conditioners, along with damaging processes such as chemical dyeing and permanent wave treatments, affect the maintenance and grooming process and are important to study because they alter many hair properties. Nanoscale characterization of the cellular structure, mechanical properties, and morphological, frictional, and adhesive properties (tribological properties) of hair are essential to evaluate and develop better cosmetic products, and to advance the understanding of biological and cosmetic science. The atomic/friction force microscope (AFM/FFM) and nanoindenter have become important tools for studying the micro/nanoscale properties of human hair. In this chapter, we present a comprehensive review of structural, mechanical, and tribological properties of various hair and skin as a function of ethnicity, damage, conditioning treatment, and various environments. Various cellular structure of human hair and fine sublamellar structures of the cuticle are identified and studied. Nanomechanical properties such as hardness, elastic modulus, tensile deformation, creep, and scratch resistance are discussed. Nanotribological properties such as roughness, friction, and adhesion are presented, as well as investigations of conditioner distribution, thickness, and binding interactions. To study the electrostatic charge build up on hair, surface potential studies are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P Attard and SJ Miklavcic, Effective spring constant of bubbles and droplets, Langmuir 17 (2001) 8217–8223

    Article  CAS  Google Scholar 

  2. HA Barnes and GP Roberts, The non-linear viscoelastic behaviour of human hair at moderate extensions, Inter. J. Cosmet. Sci. 22 (2000) 259–264

    Article  CAS  Google Scholar 

  3. M Benz, NH Chen, and J Israelachvili, Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus, J. Biomed. Mater. Res. A 71A (2004) 6–15

    Google Scholar 

  4. R Beyak, CF Meyer, and GS Kass, Elasticity and tensile properties of human hair I – Single fiber test method, J. Soc. Cosmet. Chem 20 (1969), 615

    Google Scholar 

  5. D Bhatt, J Newman, and CJ Radke, Equilibrium force isotherms of a deformable buble/drop interacting with a solid particle across a thin liquid film, Langmuir 17 (2001) 116–130

    Article  CAS  Google Scholar 

  6. B Bhushan, Influence of test parameters in the measurement of the coefficient of friction of magnetic tapes, Wear 93 (1984) 81–89

    Article  Google Scholar 

  7. B Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  8. B Bhushan: Handbook of Micro/Nanotribology, 2nd Ed. (CRC Press, Boca Raton, FL 1999)

    Google Scholar 

  9. B Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  10. B Bhushan: Nanotribology and Nanomechanics-An Introduction (Springer-Verlag, Heidelberg, Germany 2005)

    Google Scholar 

  11. B Bhushan and GS Blackman, Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology, J. Tribol.-Trans. ASME 113 (1991) 452–457

    Article  Google Scholar 

  12. B Bhushan and Z Burton, Adhesion and friction properties of polymers in microfluidic devices, Nanotechnology 16 (2005) 467–478

    Article  CAS  Google Scholar 

  13. B Bhushan and N Chen, AFM studies of environmental effects on nanomechanical properties and cellular structure of human hair, Ultramicroscopy 106 (2006) 755–764

    Article  CAS  Google Scholar 

  14. B Bhushan and C Dandavate, Thin-film friction and adhesion studies using atomic force microscopy, J. Appl. Phys. 87 (2000) 1201–1210

    Article  CAS  Google Scholar 

  15. B Bhushan and AV Goldade, Measurement and analysis of surface potential change during wear of single-crystal silicon (100) at ultralow loads using Kelvin probe microscopy, Appl. Surf. Sci. 157 (2000) 373–381

    Article  CAS  Google Scholar 

  16. B Bhushan and AV Goldade, Kelvin probe microscopy measurements of surface potential change under wear at low loads, Wear 244 (2000) 104–117

    Article  CAS  Google Scholar 

  17. B Bhushan and T Kasai, A surface topography-independent friction measurement technique using torsional resonance mode in an AFM, Nanotechnology 15 (2004) 923–935

    Article  Google Scholar 

  18. B Bhushan and X Li, Nanomechanical properties of solid surfaces and thin films (invited), Inter. Mater. Rev. 48 (2003) 125–164

    Article  CAS  Google Scholar 

  19. B Bhushan and J Qi, Phase contrast imaging of nanocomposites and molecularly thick lubricant films in magnetic media, Nanotechnology 14 (2003) 886–895

    Article  CAS  Google Scholar 

  20. B Bhushan, H Liu, SM Hsu, Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects, ASME J. Tribol. 126 (2004) 583–590

    Article  CAS  Google Scholar 

  21. B Bhushan, G Wei, and P Haddad, Friction and wear studies of human hair and skin, Wear 259, (2005) 1012–1021

    Article  CAS  Google Scholar 

  22. MS Bobji and B Bhushan, In situ microscopic surface characterization studies of polymeric thin films during tensile deformation using atomic force microscopy, J. Mater. Res. 16, (2001) 844–855

    Article  CAS  Google Scholar 

  23. MS Bobji and B Bhushan, Atomic force microscopy study of the microcracking of magnetic thin films under tension, Scripta Mater. 44, (2001) 37–42

    Article  CAS  Google Scholar 

  24. C Bolduc and J Shapiro, Hair care products: waving, straightening, conditioning, and coloring, Clinics in Dermatology 19 (2001) 431–436.

    Article  CAS  Google Scholar 

  25. J Brandup, EH Immergut, and EA Grulke, eds.: Polymer Handbook (4th Edition, Wiley, New York 1999)

    Google Scholar 

  26. N Chen and B Bhushan, Morphological, nanomechanical and cellular structural characterization of human hair and conditioner distribution using torsional resonance mode in an AFM, J. Microscopy 220 (2005) 96–112

    Article  CAS  Google Scholar 

  27. N Chen and B Bhushan, Atomic force microscopy studies of conditioner thickness distribution and binding interactions on the hair surface, J. Microscopy 221 (2006) 203–215

    Article  CAS  Google Scholar 

  28. NH Chen, T Kuhl, R Tadmor, Q Lin, and JN Israelachvili, Large deformations during the coalescence of fluid interfaces, Phys. Rev. Lett. 92 (2004) Art. No.-024501

    Google Scholar 

  29. S Dekoi and J Jedoi, Hair low-sulphur protein composition does not differ electrophoretically among different races, J. Dermatol. 15 (1988) 393–396

    Google Scholar 

  30. S Dekoi and J Jedoi, Amount of fibrous and matrix substances from hair of different races, J. Dermatol. 19 (1990) 62–64

    Google Scholar 

  31. D DeVecchio and B Bhushan, Use of a nanoscale Kelvin probe for detecting wear precursors, Rev. Sci. Instrum. 69 (1998) 3618–3824

    Article  CAS  Google Scholar 

  32. A Feughelman: Mechanical Properties and Structure of Alpha-Keratin Fibres: Wool, Human Hair and Related Fibres (University of South Wales Press, Sydney, 1997)

    Google Scholar 

  33. M Feughelman, The physical properties of alpha keratin fibers, J. Soc. Cosmet. Chem. 33, (1982) 385–406

    CAS  Google Scholar 

  34. ML Forcada, MM Jakas, and A Grasmarti, On liquid-film thickness measurements with the atomic-force microscope, J. Chem. Phys. 95 (1991) 706–708

    Article  CAS  Google Scholar 

  35. ME Ginn, CM Noyes, and E Jungermann, The contact angle of water on viable human skin, J. Colloid and Interface Science 26 (1968) 146–151

    Article  CAS  Google Scholar 

  36. J Gray, Hair care and hair care products, Clinics in Dermatology 19 (2001) 227–236

    Article  CAS  Google Scholar 

  37. J Gray: The World of Hair (Online, http://www.pg.com/science/haircare/hair_twh_toc.htm, 2003)

    Google Scholar 

  38. GH Henderson, GM Karg, and JJ O’Neill, Fractography of human hair, J. Soc. Cosmet. Chem. 29 (1978) 449–467

    Google Scholar 

  39. JN Israelachvili: Intermolecular & surface forces (2nd Edition, Academic Press, London 1992)

    Google Scholar 

  40. J Jachowicz and R McMullen, Mechanical analysis of elasticity and flexibility of virgin and polymer-treated hair fiber assemblies, J. Cosmet. Sci. 53 (2002) 345–361

    CAS  Google Scholar 

  41. J Jachowitz, G Wis-Surel, and ML Garcia, Relationship between triboelectric charging and surface modifications of human hair, J. Soc. Cosmet. Chem. 36 (1985) 189–212

    Google Scholar 

  42. C Jalbert, JT Koberstein, I Yilgor, P Gallagher, and V Krukonis, Molecular weight dependence and end-group effects on the surface tension of poly(dimethylsiloxane), Macromolecules 26 (1993) 3069–3074

    Article  CAS  Google Scholar 

  43. P Jollès, H Zahn, and H Höcker (Eds.): Formation and Structure of Human Hair (Birkhäuser Verlag, Berlin 1997)

    Google Scholar 

  44. T Kasai, B Bhushan, L Huang, and CM Su, Topography and phase imaging using the torsional resonance mode, Nanotechnology 15 (2004) 731–742

    Article  CAS  Google Scholar 

  45. C LaTorre and B Bhushan, Nanotribological characterization of human hair and skin using atomic force microscopy, Ultramicroscopy 105 (2005) 155–175

    Article  CAS  Google Scholar 

  46. C LaTorre and B Bhushan, Nanotribological effects of hair care products and environment on human hair using atomic force microscopy, J. Vac. Sci. Technol. A 23 (2005) 1034–1045

    Article  CAS  Google Scholar 

  47. C LaTorre and B Bhushan, Investigation of scale effects and directionality dependence on adhesion and friction of human hair using AFM and macroscale friction test apparatus, Ultramicroscopy 106 (2006) 720–734

    Article  CAS  Google Scholar 

  48. C LaTorre, B Bhushan, JZ Yang, and PM Torgerson, Nanotribological Effects of silicone type, silicone deposition level, and surfactant type on human hair using atomic force microscopy, J. Cosmetic Sci. 57 (2006) 37–56

    CAS  Google Scholar 

  49. G Lerebour, S Cupferman, C Cohen, and MN Bellon-Fontaine, Comparison of surface free energy between reconstructed human epidermis and in-situ human skin, Skin Research and Technology 6 (2000) 245–249

    Article  Google Scholar 

  50. X Li, B Bhushan, and PB McGinnis, Nanoscale mechanical characterization of glass fibers, Mater. Lett. 29 (1996) 215–220

    Article  Google Scholar 

  51. B Lindelof, B Forslind, and MS Hedblad, Human hair form. Morphology revieled by light and scanning electron microscopy and computer aided three-dimensional reconstruction, Arch. Dermatol. 124 (1988) 1359–1363

    Article  CAS  Google Scholar 

  52. H Liu and B Bhushan, Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97 (2003) 321–340

    Article  CAS  Google Scholar 

  53. RA Lodge and B Bhushan, Surface characterization of human hair using tapping mode atomic force microscopy and measurement of conditioner thickness distribution, J. Vac. Sci. Technol. A 24 (2006) 1258–1269

    Article  CAS  Google Scholar 

  54. RA Lodge and B Bhushan, Wetting properties of human hair by means of dynamic contact angle measurement, J. Appl. Poly. Sci. 102 (2006) 5255–5265

    Article  CAS  Google Scholar 

  55. RA Lodge and B Bhushan, Effect of physical wear and triboelectric interaction on surface charges measured by Kelvin probe microscopy, J. Colloid Interface Sci. 310 (2007) 321–330

    Article  CAS  Google Scholar 

  56. RA Lodge and B Bhushan, Surface potential measurement of human hair using Kelvin probe microscopy, J. Vac. Sci. Technol. A 25 (2007) 893–902

    Article  CAS  Google Scholar 

  57. AC Lunn and RE Evans, The electrostatic properties of human hair, J. Soc. Cosmet. Chem 28 (1977) 549–569.

    CAS  Google Scholar 

  58. JE Mark: Polymers Data Handbook (Oxford University Press, Oxford 1999)

    Google Scholar 

  59. J Menkart, LJ Wolfram, and I Mao, Caucasian hair, Negro hair, and wool: similarities and differences, J. Soc. Cosmet. Chem. 35 (1984) 21–43

    Google Scholar 

  60. CM Mills, VC Ester, and H Henkin, Measurement of static charge on hair, J. Soc. Cosmet. Chem. 7 (1956) 466–475

    Google Scholar 

  61. R Molina, F Comelles, MR Julia, and P Erra, Chemical modifications on human hair studied by means of contact angle determination, J. Colloid Interface Sci. 237 (2001) 40–46

    Article  CAS  Google Scholar 

  62. AP Negri, HJ Cornell, and DE Rivett, A model for the surface of keratin fibers, Textile Res. J. 63 (1993) 109–115

    Article  CAS  Google Scholar 

  63. C Nappe and M Kermici, Electrophoretic analysis of aklylated proteins of human hair from various ethnic groups, J. Cosmet. Chem. 40 (1989) 91–99

    CAS  Google Scholar 

  64. G Nikiforidis, C Balas, and D Tsambaos, Mechanical parameters of human hair: possible applications in the diagnosis and follow-up of hair disorders, Clin. Phys. Physiol. Meas. 13 (1992) 281–290

    Article  CAS  Google Scholar 

  65. AN Parbhu, WG Bryson, and R Lal, Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an AFM, Biochemistry 38 (1999) 11755–11761

    Article  CAS  Google Scholar 

  66. PT Pugliese: Physiology of the Skin (Allured Publishing Corporation, Carol Stream, Illinois 1996)

    Google Scholar 

  67. RJ Randebrook, J. Soc. Cosmet. Chem. 15 (1964) 691

    Google Scholar 

  68. C Robbins: Chemical and Physical Behavior of Human Hair (3rd Edition, Springer-Verlag, New York 1994)

    Google Scholar 

  69. CR Robbins and RJ Crawford, Cuticle damage and the tensile properties of human hair, J. Soc. Cosmet. Chem. 42 (1991) 59–67

    Google Scholar 

  70. SB Ruetsch and HG Weigmann, Mechanism of tensile stress release in the keratin fiber, J. Soc. Cosmet. Chem. 47 (1996) 13–26

    Google Scholar 

  71. H Schott, Contact Angles and wettability of human skin, Journal of Pharmaceutical Sciences 60 (1971) 1893–1895

    Article  CAS  Google Scholar 

  72. GV Scott and CR Robbins, Effects of surfactant solutions on hair fiber friction, J. Soc. Cosmet. Chem. 31 (1980) 179–200

    CAS  Google Scholar 

  73. WW Scott and B Bhushan, Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films, Ultramicroscopy 97 (2003) 151–169

    Article  CAS  Google Scholar 

  74. I Seshadri and B Bhushan, In-situ tensile deformation characterization of human hair with atomic force microscopy, Acta Mater. 56 (2008) 774–781

    Article  CAS  Google Scholar 

  75. JR Smith and JA Swift, Lamellar subcomponents of the cuticular cell membrane complex of mammalian keratin fibres show friction and hardness contrast by AFM, J. Microscopy 206 (2002) 182–193

    Article  CAS  Google Scholar 

  76. Y Song and B Bhushan, Quantitative extraction of in-plane surface properties using torsional resonance mode of atomic force microscopy, J. Appl. Phys. 97 (2005) 083533

    Article  CAS  Google Scholar 

  77. G Swanbeck, J Nyren and L Juhlin, Mechanical properties of hair from patients with different types of hair diseases, J. Invest. Dermatol. 54 (1970) 248–251

    Article  CAS  Google Scholar 

  78. JA Swift, Fine details on the surface of human hair, Int. J. Cosmetic Sci. 13 (1991) 143–159

    Article  CAS  Google Scholar 

  79. JA Swift: Morphology and histochemistry of human hair, Formation and Structure of Human Hair, ed. By P Jolles, H Zahn, and H Hocker (Birkhauser Verlag, Berlin 1997) 149–175

    Google Scholar 

  80. JA Swift, The mechanics of fracture of human hair, Inter. J. Cosmet. Sci. 21 (1999) 227–239

    Article  CAS  Google Scholar 

  81. JA Swift, The cuticle controls bending stiffness of hair, J. Cosmet. Sci. 51 (2000) 37–38

    Google Scholar 

  82. JA Swift and B Bews, The chemistry of human hair cuticle-I: A new method for the physical isolation of the cuticle, J. Soc. Cosmet. Chem. 25 (1974) 13–22

    CAS  Google Scholar 

  83. AN Syed, A Kuhajda, H Ayoub, K Ahmad, and EM Frank: African-American hair: Its physical properties and differences relative to Caucasian hair, in Hair Care (Cosmetics & Toiletries Applied Research Series) (Allured Publishing Corporation, Carol Stream, IL 1996)

    Google Scholar 

  84. NS Tambe and B Bhushan, In situ study of nano-cracking in multilayered magnetic tapes under monotonic and fatigue loading using an AFM, Ultramicroscopy 100 (2004) 359–373

    Article  CAS  Google Scholar 

  85. Z Tao and B Bhushan, Surface modification of AFM Si3N4 probes for adhesion/friction reduction and imaging improvement, ASME J. Tribol. 128 (2006) 865–875

    Article  CAS  Google Scholar 

  86. Z Tao and B Bhushan, Wetting properties of AFM probes by means of contact angle measurements, J. Phys: Appl. Phys. 39 (2006) 3858–3862

    CAS  Google Scholar 

  87. S Thibaut and BA Bernard, The biology of hair shape, Int. J. Dermatol. 44 (2005) S2–S3

    Article  Google Scholar 

  88. S Thibaut, O Gailard, P Bouhanna, DW Cannell, and BA Bernard, Human hair shaped is programmed from the bulb, Brit. J. Dermatol. 152 (2005) 632–638

    Article  CAS  Google Scholar 

  89. G Wei and B Bhushan, Nanotribological and nanomechanical characterization of human hair using a nanoscratch technique, Ultramicroscopy 106 (2006) 742–754

    Article  CAS  Google Scholar 

  90. G Wei, B Bhushan, and PM Torgerson, Nanomechanical characterization of human hair using nanoindentation and SEM, Ultramicroscopy 105 (2005) 155–175

    Article  CAS  Google Scholar 

  91. PW Wertz, DT Downing, Stratum corneum: biological and biochemical considerations, Transdermal Drug Delivery, ed. by J Swarbrick and RH Guy (Marcel Dekker, New York, 1989)

    Google Scholar 

  92. PW Wertz, KC Madison, DT Downing, Covalently bound lipids of human stratum corneum, J. Invest. Dermatol. 92 (1989) 109

    Article  CAS  Google Scholar 

  93. FJ Wortmann and H Zahn, The stress/strain curve of α-keratin fibers and the structure of the intermediate filament, Text Res. J. 64 (1994) 737–743

    Article  CAS  Google Scholar 

  94. H Yanazawa, Adhesion model and experimental-verification for polymer SIO2 system, Colloids and Surfaces 9 (1984) 133–145

    Article  CAS  Google Scholar 

  95. C Zviak (ed.): The Science of Hair Care (Marcel Dekker, New York 1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B., LaTorre, C. (2008). Structural, Nanomechanical, and Nanotribological Characterization of Human Hair Using Atomic Force Microscopy and Nanoindentation. In: Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77608-6_24

Download citation

Publish with us

Policies and ethics