Skip to main content

Self-Assembled Monolayers (SAMs) for Controlling Adhesion, Friction, and Wear

  • Chapter
Nanotribology and Nanomechanics

Abstract

Making micro- and nanodevices as well as magnetic storage devices reliable necessitates the use of protective hydrophobic lubricating films that can minimize the adhesion, friction, and wear of sliding surfaces. Because of the small clearances associated with these devices, such films need to be very thin (on the order of a few molecules thick). Chemically-bonded low surface tension liquid films are suitable for this purpose, as are a select number of hydrophobic solid films. Highly hydrophobic ordered molecular assemblies can also be used; these are engineered by chemically grafting various polymer molecules with suitable functional head groups, spacer chains and nonpolar surface terminal groups to the surface involved. In this chapter, we focus on the use of self-assembled monolayers (SAMs) for high hydrophobicity and/or low adhesion, friction and wear applications. SAMs are produced by various organic precursors, so the chapter starts with a primer for the organic chemistry associated with this field. This is followed by an overview of selected SAMs with various spacer chains and terminal groups in their molecular chains on a variety of substrates, and a summary of the tribological properties of SAMs. The adhesion, friction and wear properties of SAMs with various spacer chains and surface terminal and head groups (hexadecane thiol, biphenyl thiol, alkylsilane, perfluoroalkylsilane and alkylphosphonate) on various substrates (Au, Si, and Al) are then surveyed. Degradation mechanisms and environmental effects are studied. Nanotribological studies of various SAM films by atomic force microscopy (AFM), show that perfluoroalkylsilane SAMs in particular exhibit attractive hydrophobic and tribological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Bhushan, J.N. Israelachvili, U. Landman: Nanotribology: friction, wear and lubrication at the atomic scale, Nature 374, 607–616 (1995)

    Article  CAS  Google Scholar 

  2. B. Bhushan: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  3. B. Bhushan (Ed.): Tribology Issues and Opportunities in MEMS (Kluwer Academic, Dordrecht 1998)

    Google Scholar 

  4. B. Bhushan (Ed.): Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton 1999)

    Google Scholar 

  5. B. Bhushan: Nanotribology and Nanomechanics – An Introduction (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  6. K.F. Man, B.H. Stark, R. Ramesham: A Resource Handbook for MEMS Reliability (JPL Press, Jet Propulsion Laboratory, California Institute of Technology, Pasadena 1998)

    Google Scholar 

  7. K.F. Man: MEMS reliability for space applications by elimination of potential failure modes through testing and analysis, http://www.rel.jpl.nasa.gov/Org/5053/atpo/products/Prod-map.html, (2002)

    Google Scholar 

  8. D.M. Tanner, N.F. Smith, L.W. Irwin et al.: MEMS Reliability: Infrastructure, Test Structure, Experiments, and Failure Modes, SAND2000-0091 (Sandia National Laboratories, Albuquerque 2000)

    Google Scholar 

  9. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  10. B. Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  11. M.E. Schrader, G.I. Loeb (Eds.): Modern Approaches to Wettability (Plenum, New York 1992)

    Google Scholar 

  12. A. Ulman (Eds.): Characterization of Organic Thin Films (Butterworth–Heinemann, Boston 1995)

    Google Scholar 

  13. A.W. Neumann, J.K. Spelt (Eds.): Applied Surface Thermodynamics (Marcel Dekker, New York 1996)

    Google Scholar 

  14. B. Bhushan: Contact mechanics of rough surfaces in tribology: multiple asperity contact, Tribol. Lett. 4, 1–35 (1998)

    Article  Google Scholar 

  15. B. Bhushan, W. Peng: Contact mechanics of multilayered rough surfaces, Appl. Mech. Rev. 55, 435–480 (2002)

    Article  Google Scholar 

  16. M. Nosonovsky, B. Bhushan: Roughness optimization for biomimetic superhydrophobic surfaces, Microsyst. Technol. 11, 535–549 (2005)

    Article  CAS  Google Scholar 

  17. R. Maboudian: Surface processes in MEMS technology, Surf. Sci. Rep. 30, 209–269 (1998)

    Article  Google Scholar 

  18. B. Bhushan (Ed.): Modern Tribology Handbook, Vol. 1 – Principles of Tribology; Vol. 2 – Materials, Coatings, and Industrial Applications (CRC, Boca Raton 2001)

    Google Scholar 

  19. B. Bhushan, Z. Zhao: Macro- and microscale tribological studies of molecularly-thick boundary layers of perfluoropolyether lubricants for magnetic thin-film rigid disks, J. Info. Stor. Proc. Syst. 1, 1–21 (1999)

    Google Scholar 

  20. F.P. Bowden, D. Tabor: The Friction and Lubrication of Solids, Part I (Clarendon, Oxford 1950)

    Google Scholar 

  21. W.A. Zisman: Friction, durability and wettability properties of monomolecular films on solids. In: Friction and Wear, ed. by R. Davies (Elsevier, Amsterdam 1959) pp.110–148

    Google Scholar 

  22. V.N. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vac. Sci. Technol. A 14, 2378–2391 (1996)

    Article  CAS  Google Scholar 

  23. H. Liu, B. Bhushan: Nanotribological characterization of molecularly-thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97, 321–340 (2003)

    Article  CAS  Google Scholar 

  24. A. Ulman: An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly (Academic, San Diego 1991)

    Google Scholar 

  25. A. Ulman: Formation and structure of self-assembled monolayers, Chem. Rev 96, 1533–1554 (1996)

    Article  CAS  Google Scholar 

  26. H. Hansma, F. Motamedi, P. Smith, P. Hansma, J.C. Wittman: Molecular resolution of thin, highly oriented poly(tetrafluoroethylene) films with the atomic force microscope, Polym. Commun. 33, 647–649 (1992)

    CAS  Google Scholar 

  27. L. Scandella, A. Schumacher, N. Kruse, R. Prins, E. Meyer, R. Luethi, L. Howald, M. Scherge, J.A. Schaefer: Surface modification and mechanical properties of bulk silicon. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1998) pp.529–537

    Google Scholar 

  28. B. Bhushan: Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments, Diamond Relat. Mater. 8, 1985–2015 (1999)

    Article  CAS  Google Scholar 

  29. A. Erdemir, C. Donnet: Tribology of diamond, diamond-like carbon, and related films. In: Modern Tribology Handbook, Vol. 2: Materials, Coatings, and Industrial Applications, ed. by B. Bhushan (CRC, Boca Raton 2001) pp.871–908

    Google Scholar 

  30. V.F. Dorfman: Diamond-like nanocomposites (DLN), Thin Solid Films 212, 267–273 (1992)

    Article  CAS  Google Scholar 

  31. M. Grischke, K. Bewilogua, K. Trojan, H. Dimigan: Application-oriented modification of deposition process for diamond-like carbon based coatings, Surf. Coat. Technol. 74-75, 739–745 (1995)

    Article  CAS  Google Scholar 

  32. R.S. Butter, D.R. Waterman, A.H. Lettington, R.T. Ramos, E.J. Fordham: Production and wetting properties of fluorinated diamond-like carbon coatings, Thin Solid Films 311, 107–113 (1997)

    Article  CAS  Google Scholar 

  33. M. Grischke, A. Hieke, F. Morgenweck, H. Dimigan: Variation of the wettability of DLC coatings by network modification using silicon and oxygen, Diamond Relat. Mater. 7, 454–458 (1998)

    Article  CAS  Google Scholar 

  34. C. Donnet, J. Fontaine, A. Grill, V. Patel, C. Jahnes, M. Belin: Wear-resistant fluorinated diamondlike carbon films, Surf. Coat. Technol. 94-95, 531–536 (1997)

    Article  CAS  Google Scholar 

  35. D.J. Kester, C.L. Brodbeck, I.L. Singer, A. Kyriakopoulos: Sliding wear behavior of diamond-like nanocomposite coatings, Surf. Coat. Technol. 113, 268–273 (1999)

    Article  CAS  Google Scholar 

  36. H. Liu, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus, J. Vac. Sci. Technol. A 21, 1528–1538 (2003)

    Article  CAS  Google Scholar 

  37. B. Bhushan, H. Liu, S.M. Hsu: Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects, ASME J. Tribol. 126, 583–590 (2004)

    Article  CAS  Google Scholar 

  38. B. Bhushan, A.V. Kulkarni, V.N. Koinkar, M. Boehm, L. Odoni, C. Martelet, M. Belin: Microtribological characterization of self-assembled and Langmuir–Blodgett monolayers by atomic and friction force microscopy, Langmuir 11, 3189–3198 (1995)

    Article  CAS  Google Scholar 

  39. B. Bhushan, H. Liu: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by atomic force microscopy, Phys. Rev. B 63, 245412–1–11 (2001)

    Article  CAS  Google Scholar 

  40. H. Liu, B. Bhushan, W. Eck, V. Stadler: Investigation of the adhesion, friction, and wear properties of biphenyl thiol self-assembled monolayers by atomic force microscopy, J. Vac. Sci. Technol. A 19, 1234–1240 (2001)

    Article  CAS  Google Scholar 

  41. H. Liu, B. Bhushan: Investigation of nanotribological properties of alkylthiol and biphenyl thiol self-assembled monolayers, Ultramicroscopy 91, 185–202 (2002)

    Article  CAS  Google Scholar 

  42. H. Liu, B. Bhushan: Orientation and relocation of biphenyl thiol self-assembled monolayers, Ultramicroscopy 91, 177–183 (2002)

    Article  CAS  Google Scholar 

  43. B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, P. Hoffmann: AFM study of perfluorosilane and alkylsilane self-assembled monolayers for anti-stiction in MEMS/NEMS, Ultramicroscopy 105, 176–188 (2005)

    Article  CAS  Google Scholar 

  44. T. Kasai, B. Bhushan, G. Kulik, L. Barbieri, P. Hoffmann: Nanotribological study of perfluorosilane SAMs for anti-stiction and low wear, J. Vac. Sci. Technol. B 23, 995–1003 (2005)

    Article  CAS  Google Scholar 

  45. K.K. Lee, B. Bhushan, D. Hansford: Nanotribological characterization of perfluoropolymer thin films for BioMEMS applications, J. Vac. Sci. Technol. A 23, 804–810 (2005)

    Article  CAS  Google Scholar 

  46. B. Bhushan, D. Hansford, K.K. Lee: Surface modification of silicon surfaces with vapor phase deposited ultrathin fluorosilane films for biomedical devices, J. Vac. Sci. Technol. A 24, 1197–1202 (2006)

    Article  CAS  Google Scholar 

  47. N.S. Tambe, B. Bhushan: Nanotribological characterization of self assembled monolayers deposited on silicon and aluminum substrates, Nanotechnology 16, 1549–1558 (2005)

    Article  CAS  Google Scholar 

  48. Z. Tao, B. Bhushan: Degradation mechanisms and environmental effects on perfluoropolyether self assembled monolayers and diamondlike carbon films, Langmuir 21, 2391–2399 (2005)

    Article  CAS  Google Scholar 

  49. J.A. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes, D.K. Schwartz: Langmuir–Blodgett films, Science 263, 1726–1733 (1994)

    Article  CAS  Google Scholar 

  50. J. Tian, Y. Xia, G.M. Whitesides: Microcontact printing of SAMs. In: Thin Films – Self-Assembled Monolayers of Thiols, Vol.24, ed. by A. Ulman (Academic, San Diego 1998) pp.227–254

    Google Scholar 

  51. Y. Xia, G.M. Whitesides: Soft lithography, Angew. Chem. Int. Ed. 37, 550–575 (1998)

    Article  CAS  Google Scholar 

  52. A. Kumar, G.M. Whitesides: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching, Appl. Phys. Lett. 63, 2002–2004 (1993)

    Article  CAS  Google Scholar 

  53. S.Y. Chou, P.R. Krauss, P.J. Renstrom: Imprint lithography with 25-nanometer resolution, Science 272, 85–87 (1996)

    Article  CAS  Google Scholar 

  54. Y. Xia, E. Kim, X.M. Zhao, J.A. Rogers, M. Prentiss, G.M. Whitesides: Complex optical surfaces formed by replica molding against elastomeric masters, Science 273, 347–349 (1996)

    Article  CAS  Google Scholar 

  55. L.J. Hornbeck: The DMDTM projection display chip: a MEMS-based technology, MRS Bull. 26, 325–328 (2001)

    Google Scholar 

  56. M.R. Douglass: Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD). In: 1998 International Reliability Physics Proceedings, IEEE Catalog No. 98 CH 36173 (, 1998) pp.9–16 Presented at the 36th Annual International Reliability Physics Symposium, Reno

    Google Scholar 

  57. H. Liu, B. Bhushan: Nanotribological characterization of digital micromirror devices using an atomic force microscope, Ultramicroscopy 100, 391–412 (2004)

    Article  CAS  Google Scholar 

  58. H. Liu, B. Bhushan: Investigation of nanotribological and nanomechanical properties of the digital micromirror device by atomic force microscope, J. Vac. Sci. Technol. A 22, 1388–1396 (2004)

    Article  CAS  Google Scholar 

  59. A. Manz, H. Becker (Eds.): Microsystem Technology in Chemistry and Life Sciences (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  60. J. Cheng, L.J. Krica (Eds.): Biochip Technology (Harwood, New York 2001)

    Google Scholar 

  61. M.J. Heller, A. Guttman (Eds.): Integrated Microfabricated Biodevices (Marcel Dekker, New York 2001)

    Google Scholar 

  62. A. van der Berg (Ed.): Lab-on-a-Chip: Chemistry in Miniaturized Synthesis and Analysis Systems (Elsevier, Amsterdam 2003)

    Google Scholar 

  63. M. Hein, L.R. Best, S. Pattison, S. Arena: Introduction to General, Organic, and Biochemistry, 6th edn. (Brooks/Cole, Pacific Grove 1997)

    Google Scholar 

  64. J.R. Mohrig, C.N. Hammond, T.C. Morrill, D.C. Neckers: Experimental Organic Chemistry (W.H. Freeman, New York 1998)

    Google Scholar 

  65. S.R. Wasserman, Y.T. Tao, G.M. Whitesides: Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkylchlorosilanes on silicon substrates, Langmuir 5, 1074–1089 (1989)

    Article  CAS  Google Scholar 

  66. C. Jung, O. Dannenberger, Y. Xu, M. Buck, M. Grunze: Self-assembled monolayers from organosulfur compounds: a comparison between sulfides, disulfides, and thiols, Langmuir 14, 1103–1107 (1998)

    Article  CAS  Google Scholar 

  67. W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Golzhauser, M. Grunze: Electron-induced crosslinking of aromatic self-assembled monolayers: negative resists for nanolithography, Appl. Phys. Lett. 75, 2401–2403 (1999)

    Article  CAS  Google Scholar 

  68. J. Ruhe, V.J. Novotny, K.K. Kanazawa, T. Clarke, G.B. Street: Structure and tribological properties of ultrathin alkylsilane films chemisorbed to solid surfaces, Langmuir 9, 2383–2388 (1993)

    Article  Google Scholar 

  69. V. DePalma, N. Tillman: Friction and wear of self-assembled tricholosilane monolayer films on silicon, Langmuir 5, 868–872 (1989)

    Article  CAS  Google Scholar 

  70. M.T. McDermott, J.B.D. Green, M.D. Porter: Scanning force microscopic exploration of the lubrication capabilities of n-alkanethiolate monolayers chemisorbed at gold: structural basis of microscopic friction and wear, Langmuir 13, 2504–2510 (1997)

    Article  CAS  Google Scholar 

  71. X. Xiao, J. Hu, D.H. Charych, M. Salmeron: Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy, Langmuir 12, 235–237 (1996)

    Article  CAS  Google Scholar 

  72. A. Lio, D.H. Charych, M. Salmeron: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiol on gold and alkylsilanes on mica, J. Phys. Chem. B 101, 3800–3805 (1997)

    Article  CAS  Google Scholar 

  73. H. Schonherr, G.J. Vancso: Tribological properties of self-assembled monolayers of fluorocarbon and hydrocarbon thiols and disulfides on Au(111) studied by scanning force microscopy, Mater. Sci. Eng. C 8-9, 243–249 (1999)

    Article  Google Scholar 

  74. V.V. Tsukruk, V.N. Bliznyuk: Adhesive and friction forces between chemically modified silicon and silicon nitride surfaces, Langmuir 14, 446–455 (1998)

    Article  CAS  Google Scholar 

  75. V.V. Tsukruk, T. Nguyen, M. Lemieux, J. Hazel, W.H. Weber, V.V. Shevchenko, N. Klimenko, E. Sheludko: Tribological properties of modified MEMS surfaces. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1998) pp.607–614

    Google Scholar 

  76. M. Fujihira, Y. Tani, M. Furugori, U. Akiba, Y. Okabe: Chemical force microscopy of self-assembled monolayers on sputtered gold films patterned by phase separation, Ultramicroscopy 86, 63–73 (2001)

    Article  CAS  Google Scholar 

  77. R.J. Good, C.J.V. Oss: Modern Approaches to Wettability – Theory and Applications (Plenum, New York 1992)

    Google Scholar 

  78. M.H.V.C. Adao, B.J.V. Saramago, A.C. Fernandes: Estimation of the surface properties of styrene-acrylonitrile random copolymers from contact angle measurements, J. Colloid Interf. Sci. 217, 94–106 (1999)

    Article  CAS  Google Scholar 

  79. N.S. Tambe, B. Bhushan: A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities, J. Phys. D 38, 764–773 (2005)

    Article  CAS  Google Scholar 

  80. Y.F. Miura, M. Takenga, T. Koini, M. Graupe, N. Garg, R.L. Graham, T.R. Lee: Wettability of self-assembled monolayers generated from CF3-terminated alkanethiols on gold, Langmuir 14, 5821–5825 (1998)

    Article  CAS  Google Scholar 

  81. M. Ratajczak-Sitarz, A. Katrusiak, Z. Kaluski, J. Garbarczyk: 4,4′-biphenyldithiol, Acta Crystallogr. C.43, 2389–2391 (1987)

    Google Scholar 

  82. B. Bhushan, J. Ruan: Tribological performance of thin film amorphous carbon overcoats for magnetic recording disks in various environments, Surf. Coat. Technol. 68/69, 644–650 (1994)

    Article  CAS  Google Scholar 

  83. B. Bhushan, L. Yang, C. Gao, S. Suri, R.A. Miller, B. Marchon: Friction and wear studies of magnetic thin film rigid disks with glass-ceramic, glass and aluminum-magnesium substrates, Wear 190, 44–59 (1995)

    Article  CAS  Google Scholar 

  84. J.N. Israelachvili: Intermolecular and Surface Forces, 2nd edn. (Academic, London 1992)

    Google Scholar 

  85. J.I. Siepman, I.R. McDonald: Monte Carlo simulation of the mechanical relaxation of a self-assembled monolayer, Phys. Rev. Lett. 70, 453–456 (1993)

    Article  Google Scholar 

  86. M. Garcia-Parajo, C. Longo, J. Servat, P. Gorostiza, F. Sanz: Nanotribological properties of octadecyltrichlorosilane self-assembled ultrathin films studied by atomic force microscopy: contact and tapping modes, Langmuir 13, 2333–2339 (1997)

    Article  CAS  Google Scholar 

  87. D. DeVecchio, B. Bhushan: Localized surface elasticity measurements using an atomic force microscope, Rev. Sci. Instrum. 68, 4498–4505 (1997)

    Article  CAS  Google Scholar 

  88. E. Barrena, S. Kopta, D.F. Ogletree, D.H. Charych, M. Salmeron: Relationship between friction and molecular structure: alkysilane lubricant films under pressure, Phys. Rev. Lett. 82, 2880–2883 (1999)

    Article  CAS  Google Scholar 

  89. N. Eustathopoulos, M. Nicholas, B. Drevet: Wettability at High Temperature (Pergamon, Amsterdam 1999)

    Google Scholar 

  90. S. Ren, S. Yang, Y. Zhao, T. Yu, X. Xiao: Preparation and characterization of ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films, Surf. Sci. 546, 64–74 (2003)

    Article  CAS  Google Scholar 

  91. E.S. Clark: The molecular conformations of polytetrafluoroethylene: forms II and IV, Polymer 40, 4659–4665 (1999)

    Article  CAS  Google Scholar 

  92. D.R. Lide: CRC Handbook of Chemistry and Physics, 85th edn. (CRC, Boca Raton 2004)

    Google Scholar 

  93. W.D. Callister: Mater. Sci. Eng., 4th edn. (Wiley, New York 1997) p.4

    Google Scholar 

  94. N.S. Tambe, B. Bhushan: Friction model for velocity dependence of nanoscale friction, Nanotechnology 16, 2309–2324 (2005)

    Article  Google Scholar 

  95. S.C. Clear, P.F. Nealey: The effect of chain density on the frictional behavior of surfaces modified with alkylsilanes and immersed in n-Alcohols, J. Chem. Phys. 114, 2802–2811 (2001)

    Article  CAS  Google Scholar 

  96. N.S. Tambe, B. Bhushan: Durability studies of micro/nanoelectromechanical systems materials, coatings, and lubricants at high sliding velocities (up to 10 mm/s) using a modified atomic force microscope, J. Vac. Sci. Technol. A 23, 830–835 (2005)

    Article  CAS  Google Scholar 

  97. INSPEC: Properties of Silicon, EMIS Data Reviews Series No. 4 (INSPEC, Institution of Electrical Engineers, London 1988)

    Google Scholar 

  98. T. Hoshino: Adsorption of atomic and molecular oxygen and desorption of silicon monoxide on Si(111) surfaces, Phys. Rev. B 59, 2332–2340 (1999)

    Article  CAS  Google Scholar 

  99. T.L. Cottrell: The Strength of Chemical Bonds, 2nd edn. (Butterworths, London 1958)

    Google Scholar 

  100. F. Tian, X. Xiao, M.M.T. Loy, C. Wang, C. Bai: Humidity and temperature effect on frictional properties of mica and alkylsilane monolayer self-assembled on mica, Langmuir 15, 244–249 (1999)

    Article  CAS  Google Scholar 

  101. R.D. Chambers: Fluorine in Organic Chemistry (Wiley, New York 1973)

    Google Scholar 

  102. B.A. Sexton, A.E. Hughes: A comparison of weak molecular adsorption of organic-molecules on clean copper and platinum surfaces, Surf. Sci. 140, 227–248 (1984)

    Article  CAS  Google Scholar 

  103. L.H. Dubois, B.R. Zegarski, R.G. Nuzzo: Fundamental studies of microscopic wetting on organics surfaces 2. Interaction of secondary adsorbates with chemically textured organic monolayers, J. Am. Chem. Soc. 112, 570–579 (1990)

    Article  CAS  Google Scholar 

  104. M.C. McMaster, S.L.M. Schroeder, R.J. Madix: Molecular propane adsorption dynamics on Pt(110)-(1 × 2), Surf. Sci. 297, 253–271 (1993)

    Article  CAS  Google Scholar 

  105. G.J. Kluth, M. Sander, M.M. Sung, R. Maboudian: Study of the desorption mechanism of alkylsiloxane self-assembled monolayers through isotopic labeling and high resolution electron energy-loss spectroscopy experiments, J. Vac. Sci. Technol. A 16, 932–936 (1998)

    Article  CAS  Google Scholar 

  106. H.K. Kim, J.P. Lee, C.R. Park, H.T. Kwak, M.M. Sung: Thermal decomposition of alkylsiloxane self-assembled monolayers in air, J. Phys. Chem. B 107, 4348–4351 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B. (2008). Self-Assembled Monolayers (SAMs) for Controlling Adhesion, Friction, and Wear. In: Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77608-6_17

Download citation

Publish with us

Policies and ethics