Skip to main content

Computer Simulations of Nanometer-Scale Indentation and Friction

  • Chapter
Nanotribology and Nanomechanics
  • 4174 Accesses

Abstract

Engines and other machines with moving parts are often limited in their design and operational lifetime by friction and wear. This limitation has motivated the study of fundamental tribological processes with the ultimate aim of controlling and minimizing their impact. The recent development of miniature apparatus, such as microelectromechanical systems (MEMS) and nanometer-scale devices, has increased interest in atomic-scale friction, which has been found to, in some cases, be due to mechanisms that are distinct from the mechanisms that dominate in macroscale friction. Presented in this chapter is a review of computational studies of tribological processes at the atomic and nanometer scale. In particular, a review of the findings of computational studies of nanometer-scale indentation, friction and lubrication is presented, along with a review of the salient computational methods that are used in these studies, and the conditions under which they are best applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Dowson: History of Tribology (Longman, London 1979)

    Google Scholar 

  2. K.L. Johnson, K. Kendell, A.D. Roberts: Surface energy and the contact of elastic solids, Proc. R. Soc. Lond. A 324, 301–313 (1971)

    CAS  Google Scholar 

  3. M. Gad-el-Hak (Ed.): The MEMS Handbook, Mech. Eng. Handbook Ser. (CRC, Boca Raton 2002)

    Google Scholar 

  4. J. Krim: Friction at the atomic scale, Sci. Am. 275, 74–80 (1996)

    CAS  Google Scholar 

  5. J. Krim: Atomic-scale origins of friction, Langmuir 12, 4564–4566 (1996)

    CAS  Google Scholar 

  6. J. Krim: Progress in nanotribology: experimental probes of atomic-scale friction, Comment Cond. Mat. Phys. 17, 263–280 (1995)

    CAS  Google Scholar 

  7. A.P. Sutton: Deformation mechanisms, electronic conductance and friction of metallic nanocontacts, Curr. Opin. Sol. St. Mater. Sci. 1, 827–833 (1996)

    CAS  Google Scholar 

  8. C.M. Mate: Force microscopy studies of the molecular origins of friction and lubrication, IBM J. Res. Dev. 39, 617–627 (1995)

    CAS  Google Scholar 

  9. A.M. Stoneham, M.M.D. Ramos, A.P. Sutton: How do they stick together – the statics and dynamics of interfaces, Philos. Mag. A 67, 797–811 (1993)

    CAS  Google Scholar 

  10. I.L. Singer: Friction and energy dissipation at the atomic scale: A review, J. Vacuum Sci. Technol. A 12, 2605–2616 (1994)

    CAS  Google Scholar 

  11. B. Bhushan, J.N. Israelachvili, U. Landman: Nanotribology – friction, wear and lubrication at the atomic scale, Nature 374, 607–616 (1995)

    CAS  Google Scholar 

  12. J.A. Harrison, D.W. Brenner: Handbook of Micro/Nanotechnology, ed. by B. Bhushan (CRC, Boca Raton 1995)

    Google Scholar 

  13. J.B. Sokoloff: Theory of atomic level sliding friction between ideal crystal interfaces, J. Appl. Phys. 72, 1262–1270 (1992)

    CAS  Google Scholar 

  14. W. Zhong, G. Overney, D. Tomanek: Theory of atomic force microscopy on elastic surfaces. In: The Structure of Surfaces III: Proc. 3rd Int. Conf. on the Structure of Surfaces, Vol.24, ed. by S.Y. Tong, M.A.V. Hove, X. Xide, K. Takayanagi (Springer, Berlin, Heidelberg 1991) p.243

    Google Scholar 

  15. J.N. Israelachvili: Adhesion, friction and lubrication of molecularly smooth surfaces. In: Fundamentals of Friction: Macroscopic and Microscopic processes, ed. by I.L. Singer, H.M. Pollock (Kluwer, Dordrecht 1992) pp.351–385

    Google Scholar 

  16. S.B. Sinnott: Theory of atomic-scale friction. In: Handbook of Nanostructured Materials and Nanotechnology, Vol.2, ed. by H. Nalwa (Academic, San Diego 2000) pp.571–618

    Google Scholar 

  17. S.-J. Heo, S.B. Sinnott, D.W. Brenner, J.A. Harrison: Computational modeling of nanometer-scale tribology. In: Nanotribology and Nanomechanics, ed. by B. Bhushan (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  18. G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)

    Google Scholar 

  19. C.M. Mate, G.M. Mcclelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59, 1942–1945 (1987)

    CAS  Google Scholar 

  20. G.J. Germann, S.R. Cohen, G. Neubauer, G.M. Mcclelland, H. Seki, D. Coulman: Atomic-scale friction of a diamond tip on diamond (100) surface and (111) surface, J. Appl. Phys. 73, 163–167 (1993)

    CAS  Google Scholar 

  21. R.W. Carpick, M. Salmeron: Scratching the surface: Fundamental investigations of tribology with atomic force microscopy, Chem. Rev. 97, 1163–1194 (1997)

    CAS  Google Scholar 

  22. J.N. Israelachvili: Intermolecular and surface forces: With applications to colloidal and biological systems (Academic, London 1992)

    Google Scholar 

  23. J. Krim, D.H. Solina, R. Chiarello: Nanotribology of a Kr monolayer – a quartz crystal microbalance study of atomic-scale friction, Phys. Rev. Lett. 66, 181–184 (1991)

    CAS  Google Scholar 

  24. G.A. Tomlinson: A molecular theory of friction, Philos. Mag. Ser. 7 7, 905–939 (1929)

    CAS  Google Scholar 

  25. F.C. Frenkel, T. Kontorova: On the theory of plastic deformation and twinning, Zh. Eksp. Teor. Fiz. 8, 1340 (1938)

    Google Scholar 

  26. G.M. McClelland, J.N. Glosli: Friction at the atomic scale. In: Fundamentals of friction: Macroscopic and microscopic processes, ed. by I.L. Singer, H.M. Pollock (Kluwer, Dordrecht 1992) pp.405–422

    Google Scholar 

  27. J.B. Sokoloff: Theory of dynamical friction between idealized sliding surfaces, Surf. Sci. 144, 267–272 (1984)

    CAS  Google Scholar 

  28. J.B. Sokoloff: Theory of energy dissipation in sliding crystal surfaces, Phys. Rev. B 42, 760–765 (1990)

    Google Scholar 

  29. J.B. Sokoloff: Possible nearly frictionless sliding for mesoscopic solids, Phys. Rev. Lett. 71, 3450–3453 (1993)

    CAS  Google Scholar 

  30. J.B. Sokoloff: Microscopic mechanisms for kinetic friction: Nearly frictionless sliding for small solids, Phys. Rev. B 52, 7205–7214 (1995)

    CAS  Google Scholar 

  31. J.B. Sokoloff: Theory of electron and phonon contributions to sliding friction. In: Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tosatti (Kluwer, Dordrecht 1996) pp.217–229

    Google Scholar 

  32. J.B. Sokoloff: Static friction between elastic solids due to random asperities, Phys. Rev. Lett. 86, 3312–3315 (2001)

    CAS  Google Scholar 

  33. J.B. Sokoloff: Possible microscopic explanation of the virtually universal occurrence of static friction, Phys. Rev. B 65, 115415 (2002)

    Google Scholar 

  34. B.N.J. Persson, D. Schumacher, A. Otto: Surface resistivity and vibrational damping in adsorbed layers, Chem. Phys. Lett. 178, 204–212 (1991)

    CAS  Google Scholar 

  35. A.I. Volokitin, B.N.J. Persson: Resonant photon tunneling enhancement of the van der Waals friction, Phys. Rev. Lett. 91, 106101 (2003)

    CAS  Google Scholar 

  36. A.I. Volokitin, B.N.J. Persson: Noncontact friction between nanostructures, Phys. Rev. B 68, 155420 (2003)

    Google Scholar 

  37. A.I. Volokitin, B.N.J. Persson: Adsorbate-induced enhancement of electrostatic noncontact friction, Phys. Rev. Lett. 94, 086104 (2005)

    CAS  Google Scholar 

  38. J.S. Helman, W. Baltensperger, J.A. Holyst: Simple model for dry friction, Phys. Rev. B 49, 3831–3838 (1994)

    Google Scholar 

  39. T. Kawaguchi, H. Matsukawa: Dynamical frictional phenomena in an incommensurate two-chain model, Phys. Rev. B 56, 13932–13942 (1997)

    CAS  Google Scholar 

  40. M.H. Müser: Nature of mechanical instabilities and their effect on kinetic friction, Phys. Rev. Lett. 89, 224301 (2002)

    Google Scholar 

  41. M.H. Müser: Towards an atomistic understanding of solid friction by computer simulations, Comput. Phys. Commun. 146, 54–62 (2002)

    Google Scholar 

  42. P. Reimann, M. Evstigneev: Nonmonotonic velocity dependence of atomic friction, Phys. Rev. Lett. 93, 230802 (2004)

    Google Scholar 

  43. C. Ritter, M. Heyde, B. Stegemann, K. Rademann, U.D. Schwarz: Contact area dependence of frictional forces: Moving adsorbed antimony nanoparticles, Phys. Rev. B 71, 085405 (2005)

    Google Scholar 

  44. C. Fusco, A. Fasolino: Velocity dependence of atomic-scale friction: A comparative study of the one- and two-dimensional Tomlinson model, Phys. Rev. B 71, 045413 (2005)

    Google Scholar 

  45. C.W. Gear: Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs 1971)

    Google Scholar 

  46. W.G. Hoover: Molecular Dynamics (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  47. D.W. Heermann: Computer Simulation Methods in Theoretical Physics (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  48. M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids (Clarendon, Oxford 1987)

    Google Scholar 

  49. J.M. Haile: Molecular Dynamics Simulation: Elementary Methods (Wiley, New York 1992)

    Google Scholar 

  50. M. Finnis: Interatomic Forces in Condensed Matter (Oxford University Press, Oxford 2003)

    Google Scholar 

  51. D.W. Brenner: Relationship between the embedded-atom method and Tersoff potentials, Phys. Rev. Lett. 63, 1022–1022 (1989)

    CAS  Google Scholar 

  52. D.W. Brenner: The art and science of an analytic potential, Phys. Stat. Sol. B 217, 23–40 (2000)

    CAS  Google Scholar 

  53. R.G. Parr, W. Yang: Density Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York 1989)

    Google Scholar 

  54. R. Car, M. Parrinello: Unified approach for molecular dynamics and density functional theory, Phys. Rev. Lett. 55, 2471–2474 (1985)

    CAS  Google Scholar 

  55. C. Cramer: Essentials of Computational Chemistry, Theories and Models (Wiley, Chichester 2004)

    Google Scholar 

  56. A.P. Sutton: Electronic Structure of Materials (Clarendon, Oxford 1993)

    Google Scholar 

  57. K. Kadau, T.C. Germann, P.S. Lomdahl: Large-scale molecular dynamics simulation of 19 billion particles, Int. J. Mod. Phys. C 15, 193–201 (2004)

    CAS  Google Scholar 

  58. B.J. Thijsse: Relationship between the modified embedded-atom method and Stillinger–Weber potentials in calculating the structure of silicon, Phys. Rev. B 65, 195207 (2002)

    Google Scholar 

  59. M.I. Baskes, J.S. Nelson, A.F. Wright: Semiempirical modified embedded atom potentials for silicon and germanium, Phys. Rev. B 40, 6085–6100 (1989)

    CAS  Google Scholar 

  60. T. Ohira, Y. Inoue, K. Murata, J. Murayama: Magnetite scale cluster adhesion on metal oxide surfaces: Atomistic simulation study, Appl. Surf. Sci. 171, 175–188 (2001)

    CAS  Google Scholar 

  61. F.H. Streitz, J.W. Mintmire: Electrostatic potentials for metal oxide surfaces and interfaces, Phys. Rev. B 50, 11996–12003 (1994)

    CAS  Google Scholar 

  62. A. Yasukawa: Using an extended Tersoff interatomic potential to analyze the static fatigue strength of SiO2under atmospheric influence, JSME Int. J. A 39, 313–320 (1996)

    Google Scholar 

  63. T. Iwasaki, H. Miura: Molecular dynamics analysis of adhesion strength of interfaces between thin films, J. Mater. Res. 16, 1789–1794 (2001)

    CAS  Google Scholar 

  64. B.-J. Lee, M.I. Baskes: Second nearest-neighbor modified embedded-atom method potential, Phys. Rev. B 62, 8564–8567 (2000)

    CAS  Google Scholar 

  65. G.C. Abell: Empirical chemical pseudopotential theory of molecular and metallic bonding, Phys. Rev. B 31, 6184–6196 (1985)

    CAS  Google Scholar 

  66. J. Tersoff: New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37, 6991–7000 (1988)

    Google Scholar 

  67. J. Tersoff: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B 39, 5566–5569 (1989)

    Google Scholar 

  68. D.W. Brenner: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458–9471 (1990)

    CAS  Google Scholar 

  69. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott: Second generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. C 14, 783–802 (2002)

    CAS  Google Scholar 

  70. A.J. Dyson, P.V. Smith: Extension of the Brenner empirical interactomic potential to C-Si-H, Surf. Sci. 355, 140–150 (1996)

    CAS  Google Scholar 

  71. B. Ni, K.-H. Lee, S.B. Sinnott: Development of a reactive empirical bond order potential for hydrocarbon-oxygen interactions, J. Phys. C 16, 7261–7275 (2004)

    CAS  Google Scholar 

  72. J. Tanaka, C.F. Abrams, D.B. Graves: New C-F interatomic potential for molecular dynamics simulation of fluorocarbon film formation, Nucl. Instrum. Meth. B 18, 938–945 (2000)

    CAS  Google Scholar 

  73. I. Jang, S.B. Sinnott: Molecular dynamics simulations of the chemical modification of polystyrene through C x F y +beam deposition, J. Phys. Chem. B 108, 9656–9664 (2004)

    Google Scholar 

  74. S.B. Sinnott, O.A. Shenderova, C.T. White, D.W. Brenner: Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations, Carbon 36, 1–9 (1998)

    CAS  Google Scholar 

  75. S.J. Stuart, A.B. Tutein, J.A. Harrison: A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112, 6472–6486 (2000)

    CAS  Google Scholar 

  76. F.H. Stillinger, T.A. Weber: Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31, 5262–5271 (1985)

    CAS  Google Scholar 

  77. S.M. Foiles: Application of the embedded-atom method to liquid transition metals, Phys. Rev. B 32, 3409–3415 (1985)

    CAS  Google Scholar 

  78. M.S. Daw, M.I. Baskes: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys. Rev. Lett. 50, 1285–1288 (1983)

    CAS  Google Scholar 

  79. T.J. Raeker, A.E. Depristo: Theory of chemical bonding based on the atom-homogeneous electron gas system, Int. Rev. Phys. Chem. 10, 1–54 (1991)

    CAS  Google Scholar 

  80. R.W. Smith, G.S. Was: Application of molecular dynamics to the study of hydrogen embrittlement in Ni–Cr–Fe alloys, Phys. Rev. B 40, 10322–10336 (1989)

    CAS  Google Scholar 

  81. R. Pasianot, D. Farkas, E.J. Savino: Empirical many-body interatomic potential for bcc transition metals, Phys. Rev. B 43, 6952–6961 (1991)

    CAS  Google Scholar 

  82. R. Pasianot, E.J. Savino: Embedded-atom method interatomic potentials for hcp metals, Phys. Rev. B 45, 12704–12710 (1992)

    CAS  Google Scholar 

  83. M.I. Baskes, J.S. Nelson, A.F. Wright: Semiempirical modified embedded-atom potentials for silicon and germanium, Phys. Rev. B 40, 6085–6100 (1989)

    CAS  Google Scholar 

  84. M.I. Baskes: Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B 46, 2727–2742 (1992)

    CAS  Google Scholar 

  85. K. Ohno, K. Esfarjani, Y. Kawazoe: Computational Materials Science from Ab Initio to Monte Carlo Methods (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  86. A.K. Rappe, W.A. Goddard III: Charge equilibration for molecular dynamics simulations, J. Phys. Chem. 95, 3358–3363 (1991)

    CAS  Google Scholar 

  87. D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego 1996)

    Google Scholar 

  88. L.V. Woodcock: Isothermal molecular dynamics calculations for liquid salts, Chem. Phys. Lett. 10, 257–261 (1971)

    CAS  Google Scholar 

  89. T. Schneider, E. Stoll: Molecular dynamics study of a three-dimensional one-component model for distortive phase transitions, Phys. Rev. B 17, 1302–1322 (1978)

    CAS  Google Scholar 

  90. K. Kremer, G.S. Grest: Dynamics of entangled linear polymer melts – a molecular dynamics simulation, J. Chem. Phys. 92, 5057–5086 (1990)

    CAS  Google Scholar 

  91. S.A. Adelman, J.D. Doll: Generalized Langevin equation approach for atom-solid-surface scattering – general formulation for classical scattering off harmonic solids, J. Chem. Phys. 64, 2375–2388 (1976)

    CAS  Google Scholar 

  92. S.A. Adelman: Generalized Langevin equations and many-body problems in chemical dynamics, Adv. Chem. Phys. 44, 143–253 (1980)

    CAS  Google Scholar 

  93. J.C. Tully: Dynamics of gas-surface interactions – 3D generalized Langevin model applied to fcc and bcc surfaces, J. Chem. Phys. 73, 1975–1985 (1980)

    CAS  Google Scholar 

  94. S. Nosé: A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81, 511–519 (1984)

    Google Scholar 

  95. S. Nosé: A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52, 255–268 (1984)

    Google Scholar 

  96. G.J. Martyna, M.L. Klein, M. Tuckerman: Nose-Hoover chains – the canonical ensemble via continuous dynamics, J. Chem. Phys. 97, 2635–2643 (1992)

    Google Scholar 

  97. M. D’Alessandro, M. D’Abramo, G. Brancato, A. Di Nola, A. Amadei: Statistical mechanics and thermodynamics of simulated ionic solutions, J. Phys. Chem. B 106, 11843–11848 (2002)

    CAS  Google Scholar 

  98. J.D. Schall, C.W. Padgett, D.W. Brenner: Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations, Mol. Simul. 31, 283–288 (2005)

    CAS  Google Scholar 

  99. M. Schoen, C.L. Rhykerd, D.J. Diestler, J.H. Cushman: Shear forces in molecularly thin films, Science 245, 1223–1225 (1989)

    CAS  Google Scholar 

  100. J.E. Curry, F.S. Zhang, J.H. Cushman, M. Schoen, D.J. Diestler: Transient coexisting nanophases in ultrathin films confined between corrugated walls, J. Chem. Phys. 101, 10824–10832 (1994)

    CAS  Google Scholar 

  101. D.J. Adams: Grand canonical ensemble Monte Carlo for a Lennard–Jones fluid, Mol. Phys. 29, 307–311 (1975)

    CAS  Google Scholar 

  102. N.A.a.C., R.J. Burnham: Force microscopy. In: Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques, and Applications, ed. by D.A. Bonnell (VCH, New York 1993) pp.191–249

    Google Scholar 

  103. E. Meyer: Nanoscience: Friction and Rheology on the Nanometer Scale (World Scientific, Hackensack 1998)

    Google Scholar 

  104. G.E. Totten, H. Liang: Mechanical Tribology: Materials Characterization and Applications (Marcel Dekker, New York 2004)

    Google Scholar 

  105. N.A. Burnham, R.J. Colton: Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope, J. Vacuum Sci. Technol. A 7, 2906–2913 (1989)

    CAS  Google Scholar 

  106. N.A. Burnham, D.D. Dominguez, R.L. Mowery, R.J. Colton: Probing the surface forces of monolayer films with an atomic force microscope, Phys. Rev. Lett. 64, 1931–1934 (1990)

    CAS  Google Scholar 

  107. E. Meyer, R. Overney, D. Brodbeck, L. Howald, R. Luthi, J. Frommer, H.J. Guntherodt: Friction and wear of Langmuir-Blodgett films observed by friction force microscopy, Phys. Rev. Lett. 69, 1777–1780 (1992)

    CAS  Google Scholar 

  108. A.P. Sutton, J.B. Pethica, H. Rafii-Tabar, J.A. Nieminen: Mechanical properties of metals at the nanometer scale. In: Electron Theory in Alloy Design, ed. by D.G. Pettifor, A.H. Cottrell (Institute of Materials, London 1992) pp.191–233

    Google Scholar 

  109. H. Raffi-Tabar, A.P. Sutton: Long-range Finnis–Sinclair potentials for fcc metallic alloys, Philos. Mag. Lett. 63, 217–224 (1991)

    Google Scholar 

  110. U. Landman, W.D. Luedtke, E.M. Ringer: Atomistic mechanisms of adhesive contact formation and interfacial processes, Wear 153, 3–30 (1992)

    CAS  Google Scholar 

  111. U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton: Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture, Science 248, 454–461 (1990)

    CAS  Google Scholar 

  112. O. Tomagnini, F. Ercolessi, E. Tosatti: Microscopic interaction between a gold tip and a Pb(110) surface, Surf. Sci. 287/288, 1041–1045 (1991)

    Google Scholar 

  113. N. Ohmae: Field ion microscopy of microdeformation induced by metallic contacts, Philos. Mag. A 74, 1319–1327 (1996)

    CAS  Google Scholar 

  114. N.A. Burnham, R.J. Colton, H.M. Pollock: Interpretation of force curves in force microscopy, Nanotechnology 4, 64–80 (1993)

    CAS  Google Scholar 

  115. N. Agrait, G. Rubio, S. Vieira: Plastic deformation in nanometer-scale contacts, Langmuir 12, 4505–4509 (1996)

    Google Scholar 

  116. U. Landman, W.D. Luedtke, A. Nitzan: Dynamics of tip-substrate interactions in atomic force microscopy, Surf. Sci. 210, L177–L182 (1989)

    CAS  Google Scholar 

  117. U. Landman, W.D. Luedtke: Nanomechanics and dynamics of tip substrate interactions, J. Vacuum Sci. Technol. B 9, 414–423 (1991)

    CAS  Google Scholar 

  118. U. Landman, W.D. Luedtke, J. Ouyang, T.K. Xia: Nanotribology and the stability of nanostructures, Jpn. J. Appl. Phys. Pt. 1 32, 1444–1462 (1993)

    CAS  Google Scholar 

  119. J.W.M. Frenken, H.M. Vanpinxteren, L. Kuipers: New views on surface melting obtained with STM and ion scattering, Surf. Sci. 283, 283–289 (1993)

    CAS  Google Scholar 

  120. T. Yokohata, K. Kato: Mechanism of nanoscale indentation, Wear 168, 109–114 (1993)

    CAS  Google Scholar 

  121. O. Tomagnini, F. Ercolessi, E. Tosatti: Microscopic interaction between a gold tip and a Pb(110) surface, Surf. Sci. 287, 1041–1045 (1993)

    Google Scholar 

  122. K. Komvopoulos, W. Yan: Molecular dynamics simulation of single and repeated indentation, J. Appl. Phys. 82, 4823–4830 (1997)

    CAS  Google Scholar 

  123. J. Belak, I.F. Stowers: A Molecular Dynamics Model of the Orthogonal Cutting Process (Proc. Am. Soc. Precision Eng. Annu. Conf., 1990) pp.76–79

    Google Scholar 

  124. M. Fournel, E. Lacaze, M. Schott: Tip-surface interactions in STM experiments on Au(111): Atomic-scale metal friction, Europhys. Lett. 34, 489–494 (1996)

    CAS  Google Scholar 

  125. E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles, W.D. Nix: Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation, J. Mech. Phys. Sol. 51, 901–920 (2003)

    CAS  Google Scholar 

  126. J.L. Costakramer, N. Garcia, P. Garciamochales, P.A. Serena: Nanowire formation in macroscopic metallic contacts – quantum-mechanical conductance tapping a table top, Surf. Sci. 342, L1144–L1149 (1995)

    Google Scholar 

  127. A.I. Yanson, J.M. van Ruitenbeek, I.K. Yanson: Shell effects in alkali metal nanowires, Low Temp. Phys. 27, 807–820 (2001)

    CAS  Google Scholar 

  128. A.I. Yanson, I.K. Yanson, J.M. van Ruitenbeek: Crossover from electronic to atomic shell structure in alkali metal nanowires, Phys. Rev. Lett. 8721, 216805 (2001)

    Google Scholar 

  129. C.L. Kelchner, S.J. Plimpton, J.C. Hamilton: Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B 58, 11085–11088 (1998)

    CAS  Google Scholar 

  130. A. Hasnaoui, P.M. Derlet, H.V. Swygenhoven: Interaction between dislocations, grain boundaries under an indenter – a molecular dynamics simulation, Acta Mater. 52, 2251–2258 (2004)

    CAS  Google Scholar 

  131. O.R. de la Fuente, J.A. Zimmerman, M.A. Gonzalez, J. de la Figuera, J.C. Hamilton, W.W. Pai, J.M. Rojo: Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations, Phys. Rev. Lett. 88, 036101 (2002)

    Google Scholar 

  132. O.A. Shenderova, J.P. Mewkill, D.W. Brenner: Nanoindentation as a probe of nanoscale residual stresses, Mol. Simul. 25, 81–92 (2000)

    CAS  Google Scholar 

  133. S. Kokubo: On the change in hardness of a plate caused by bending, Sci. Rep. Tohoku Imperial University 21, 256–267 (1932)

    Google Scholar 

  134. G. Sines, R. Calson: Hardness measurements for determination of residual stresses, ASTM Bull. 180, 35–37 (1952)

    Google Scholar 

  135. G.U. Oppel: Biaxial elasto-plastic analysis of load and residual stresses, Exp. Mech. 21, 135–140 (1964)

    Google Scholar 

  136. T.R. Simes, S.G. Mellor, D.A. Hills: A note on the influence of residual stress on measured hardness, J. Strain Anal. Eng. Des. 19, 135–137 (1984)

    Google Scholar 

  137. T.Y. Tsui, G.M. Pharr, W.C. Oliver, C.S. Bhatia, C.T. White, S. Anders, A. Anders, I.G. Brown: Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks, Mat. Res. Soc. Symp. Proc. 383, 447–452 (1995)

    CAS  Google Scholar 

  138. A. Bolshakov, W.C. Oliver, G.M. Pharr: Influences of stress on the measurement of mechanical properties using nanoindentation. 2. Finite element simulations, J. Mater. Res. 11, 760–768 (1996)

    CAS  Google Scholar 

  139. J.D. Schall, D.W. Brenner: Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data, J. Mater. Res. 19, 3172–3180 (2004)

    CAS  Google Scholar 

  140. U. Landman, W.D. Luedtke, M.W. Ribarsky: Structural and dynamical consequences of interactions in interfacial systems, J. Vacuum Sci. Technol. A 7, 2829–2839 (1989)

    CAS  Google Scholar 

  141. J.S. Kallman, W.G. Hoover, C.G. Hoover, A.J. Degroot, S.M. Lee, F. Wooten: Molecular-dynamics of silicon indentation, Phys. Rev. B 47, 7705–7709 (1993)

    CAS  Google Scholar 

  142. D.R. Clarke, M.C. Kroll, P.D. Kirchner, R.F. Cook, B.J. Hockey: Amorphization and conductivity of silicon and germanium induced by indentation, Phys. Rev. Lett. 60, 2156–2159 (1988)

    CAS  Google Scholar 

  143. A. Kailer, K.G. Nickel, Y.G. Gogotsi: Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations, J. Raman Spec. 30, 939–961 (1999)

    CAS  Google Scholar 

  144. K. Minowa, K. Sumino: Stress-induced amorphization of a silicon crystal by mechanical scratching, Phys. Rev. Lett. 69, 320–322 (1992)

    CAS  Google Scholar 

  145. G.S. Smith, E.B. Tadmor, E. Kaxiras: Multiscale simulation of loading and electrical resistance in silicon nanoindentation, Phys. Rev. Lett. 84, 1260–1263 (2000)

    CAS  Google Scholar 

  146. W.C.D. Cheong, L.C. Zhang: Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation, Nanotechnology 11, 173–180 (2000)

    CAS  Google Scholar 

  147. C.F. Sanz-Navarro, S.D. Kenny, R. Smith: Atomistic simulations of structural transformations, Nanotechnology 15, 692–697 (2004)

    CAS  Google Scholar 

  148. P. Walsh, A. Omeltchenko, R.K. Kalia, A. Nakano, P. Vashishta, S. Saini: Nanoindentation of silicon nitride: A multimillion-atom molecular dynamics study, Appl. Phys. Lett. 82, 118–120 (2003)

    CAS  Google Scholar 

  149. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner: Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces, Surf. Sci. 271, 57–67 (1992)

    CAS  Google Scholar 

  150. K. Cho, J.D. Joannopoulos: Mechanical hysteresis on an atomic-scale, Surf. Sci. 328, 320–324 (1995)

    CAS  Google Scholar 

  151. A. Garg, J. Han, S.B. Sinnott: Interactions of carbon-nanotubule proximal probe tips with diamond and graphene, Phys. Rev. Lett. 81, 2260–2263 (1998)

    CAS  Google Scholar 

  152. J.A. Harrison, S.J. Stuart, D.H. Robertson, C.T. White: Properties of capped nanotubes when used as SPM tips, J. Phys. Chem. B 101, 9682–9685 (1997)

    CAS  Google Scholar 

  153. J.A. Harrison, S.J. Stuart, A.B. Tutein: A new, reactive potential energy function to study indentation and friction of C13 n-alkane monolayers. In: Interfacial Properties on the Submicron Scale, ed. by J.E. Frommer, R. Overney (ACS, Washington 2001) pp.216–229

    Google Scholar 

  154. A. Garg, S.B. Sinnott: Molecular dynamics of carbon nanotubule proximal probe tip-surface contacts, Phys. Rev. B 60, 13786–13791 (1999)

    CAS  Google Scholar 

  155. K.J. Tupper, D.W. Brenner: Compression-induced structural transition in a self-assembled monolayer, Langmuir 10, 2335–2338 (1994)

    CAS  Google Scholar 

  156. K.J. Tupper, R.J. Colton, D.W. Brenner: Simulations of self-assembled monolayers under compression – effect of surface asperities, Langmuir 10, 2041–2043 (1994)

    CAS  Google Scholar 

  157. S.A. Joyce, R.C. Thomas, J.E. Houston, T.A. Michalske, R.M. Crooks: Mechanical relaxation of organic monolayer films measured by force microscopy, Phys. Rev. Lett. 68, 2790–2793 (1992)

    CAS  Google Scholar 

  158. L. Zhang, Y. Leng, S. Jiang: Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: Effects of chain length, terminal group, and scan direction, scan velocity, Langmuir 19, 9742–9747 (2003)

    CAS  Google Scholar 

  159. A.B. Tutein, S.J. Stuart, J.A. Harrison: Indentation analysis of linear-chain hydrocarbon monolayers anchored to diamond, J. Phys. Chem. B 103, 11357–11365 (1999)

    CAS  Google Scholar 

  160. Y. Leng, S. Jiang: Dynamic simulations of adhesion and friction in chemical force microscopy, J. Am. Chem. Soc. 124, 11764–11770 (2002)

    CAS  Google Scholar 

  161. C.M. Mate: Atomic force microscope study of polymer lubricants on silicon surfaces, Phys. Rev. Lett. 68, 3323–3326 (1992)

    CAS  Google Scholar 

  162. K. Enke, H. Dimigen, H. Hubsch: Frictional properties of diamond-like carbon layers, Appl. Phys. Lett. 36, 291–292 (1980)

    CAS  Google Scholar 

  163. K. Enke: Some new results on the fabrication of and the mechanical, electrical, optical properties of I-carbon layers, Thin Solid Films 80, 227–234 (1981)

    CAS  Google Scholar 

  164. S. Miyake, S. Takahashi, I. Watanabe, H. Yoshihara: Friction and wear behavior of hard carbon films, ASLE Trans. 30, 121–127 (1987)

    CAS  Google Scholar 

  165. A. Erdemir, C. Donnet: Tribology of diamond, diamond-like carbon, and related films. In: Modern Tribology Handbook, Vol.II, ed. by B. Bhushan (CRC, Boca Raton 2000) pp.871–908

    Google Scholar 

  166. S.B. Sinnott, R.J. Colton, C.T. White, O.A. Shenderova, D.W. Brenner, J.A. Harrison: Atomistic simulations of the nanometer-scale indentation of amorphous carbon thin films, J. Vacuum Sci. Technol. A 15, 936–940 (1997)

    CAS  Google Scholar 

  167. J.N. Glosli, M.R. Philpott, G.M. McClelland: Molecular dynamics simulation of mechanical deformation of ultra-thin amorphous carbon films, Mater. Res. Soc. Symp. Proc. 383, 431–435 (1995)

    CAS  Google Scholar 

  168. M.R. Sorensen, K.W. Jacobsen, P. Stoltze: Simulations of atomic-scale sliding friction, Phys. Rev. B 53, 2101–2113 (1996)

    Google Scholar 

  169. I.L. Singer: A thermochemical model for analyzing low wear-rate materials, Surf. Coat. Technol. 49, 474–481 (1991)

    CAS  Google Scholar 

  170. I.L. Singer, S. Fayeulle, P.D. Ehni: Friction and wear behavior of tin in air – the chemistry of transfer films and debris formation, Wear 149, 375–394 (1991)

    CAS  Google Scholar 

  171. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner: Molecular dynamics simulations of atomic-scale friction of diamond surfaces, Phys. Rev. B 46, 9700–9708 (1992)

    CAS  Google Scholar 

  172. J.A. Harrison, R.J. Colton, C.T. White, D.W. Brenner: Effect of atomic-scale surface roughness on friction – a molecular dynamics study of diamond surfaces, Wear 168, 127–133 (1993)

    CAS  Google Scholar 

  173. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner: Atomistic simulations of friction at sliding diamond interfaces, MRS Bull. 18, 50–53 (1993)

    CAS  Google Scholar 

  174. J.N. Glosli, G.M. Mcclelland: Molecular dynamics study of sliding friction of ordered organic monolayers, Phys. Rev. Lett. 70, 1960–1963 (1993)

    CAS  Google Scholar 

  175. A. Koike, M. Yoneya: Molecular dynamics simulations of sliding friction of Langmuir-Blodgett monolayers, J. Chem. Phys. 105, 6060–6067 (1996)

    CAS  Google Scholar 

  176. J.E. Hammerberg, B.L. Holian, S.J. Zhou: Studies of sliding friction in compressed copper, Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Seattle, WA 1995, ed. by S.C. Schmidt, W.C. Tao (AIP, New York 1995) 370

    Google Scholar 

  177. M.D. Perry, J.A. Harrison: Friction between diamond surfaces in the presence of small third-body molecules, J. Phys. Chem. B 101, 1364–1373 (1997)

    Google Scholar 

  178. A. Buldum, S. Ciraci: Atomic-scale study of dry sliding friction, Phys. Rev. B 55, 2606–2611 (1997)

    CAS  Google Scholar 

  179. A.P. Sutton, J.B. Pithica: Inelastic flow processes in nanometre volumes of solids, J. Phys. Cond. Matter 2, 5317–5326 (1990)

    Google Scholar 

  180. S. Akamine, R.C. Barrett, C.F. Quate: Improved atomic force microscope images using microcantilevers with sharp tips, Appl. Phys. Lett. 57, 316–318 (1990)

    CAS  Google Scholar 

  181. J.A. Nieminen, A.P. Sutton, J.B. Pethica: Static junction growth during frictional sliding of metals, Acta Metall. Mater. 40, 2503–2509 (1992)

    CAS  Google Scholar 

  182. J.A. Niemienen, A.P. Sutton, J.B. Pethica, K. Kaski: Mechanism of lubrication by a thin solid film on a metal surface, Model. Simul. Mater. Sci. Eng 1, 83–90 (1992)

    Google Scholar 

  183. V.V. Pokropivny, V.V. Skorokhod, A.V. Pokropivny: Atomistic mechanism of adhesive wear during friction of atomic sharp tungsten asperity over (114) bcc-iron surface, Mater. Lett. 31, 49–54 (1997)

    CAS  Google Scholar 

  184. B. Li, P.C. Clapp, J.A. Rifkin, X.M. Zhang: Molecular dynamics simulation of stick-slip, J. Appl. Phys. 90, 3090–3094 (2001)

    CAS  Google Scholar 

  185. R. Komanduri, N. Chandrasekaran: Molecular dynamics simulation of atomic-scale friction, Phys. Rev. B 61, 14007–14019 (2000)

    CAS  Google Scholar 

  186. T.-H. Fang, C.-I. Weng, J.-G. Chang: Molecular dynamics simulation of nanolithography process using atomic force microscopy, Surf. Sci. 501, 138–147 (2002)

    CAS  Google Scholar 

  187. S. Morita, S. Fujisawa, Y. Sugawara: Spatially quantized friction with a lattice periodicity, Surf. Sci. Rep. 23, 1–41 (1996)

    CAS  Google Scholar 

  188. A. Dayo, W. Alnasrallah, J. Krim: Superconductivity-dependent sliding friction, Phys. Rev. Lett. 80, 1690–1693 (1998)

    CAS  Google Scholar 

  189. R. Erlandsson, G. Hadziioannou, C.M. Mate, G.M. Mcclelland, S. Chiang: Atomic scale friction between the muscovite mica cleavage plane and a tungsten tip, J. Chem. Phys. 89, 5190–5193 (1988)

    CAS  Google Scholar 

  190. K.L. Johnson: Contact Mechanics (Cambridge Univ. Press, Cambridge 1985)

    Google Scholar 

  191. J.B. Pethica: Interatomic forces in scanning tunneling microscopy – giant corrugations of the graphite surface – comment, Phys. Rev. Lett. 57, 3235–3235 (1986)

    CAS  Google Scholar 

  192. H. Tang, C. Joachim, J. Devillers: Interpretation of AFM images – the graphite surface with a diamond tip, Surf. Sci. 291, 439–450 (1993)

    CAS  Google Scholar 

  193. A.L. Shluger, R.T. Williams, A.L. Rohl: Lateral and friction forces originating during force microscope scanning of ionic surfaces, Surf. Sci. 343, 273–287 (1995)

    CAS  Google Scholar 

  194. S. Fujisawa, Y. Sugawara, S. Morita: Localized fluctuation of a two-dimensional atomic-scale friction, Jpn. J. Appl. Phys. Pt. 1 35, 5909–5913 (1996)

    CAS  Google Scholar 

  195. S. Fujisawa, Y. Sugawara, S. Ito, S. Mishima, T. Okada, S. Morita: The two-dimensional stick-slip phenomenon with atomic resolution, Nanotechnology 4, 138–142 (1993)

    Google Scholar 

  196. S. Fujisawa, Y. Sugawara, S. Morita, S. Ito, S. Mishima, T. Okada: Study on the stick-slip phenomenon on a cleaved surface of the muscovite mica using an atomic-force lateral force microscope, J. Vacuum Sci. Technol. B 12, 1635–1637 (1994)

    CAS  Google Scholar 

  197. J.A. Ruan, B. Bhushan: Atomic-scale and microscale friction studies of graphite and diamond using friction force microscopy, J. Appl. Phys. 76, 5022–5035 (1994)

    CAS  Google Scholar 

  198. R.W. Carpick, N. Agrait, D.F. Ogletree, M. Salmeron: Variation of the interfacial shear strength and adhesion of a nanometer-sized contact, Langmuir 12, 3334–3340 (1996)

    CAS  Google Scholar 

  199. R.W. Carpick, N. Agrait, D.F. Ogletree, M. Salmeron: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope, J. Vacuum Sci. Technol. B 14, 1289,2772 (1996)

    Google Scholar 

  200. B. Samuels, J. Wilks: The friction of diamond sliding on diamond, J. Mater. Sci. 23, 2846–2864 (1988)

    CAS  Google Scholar 

  201. T. Cagin, J.W. Che, M.N. Gardos, A. Fijany, W.A. Goddard: Simulation and experiments on friction, wear of diamond: A material for MEMS and NEMS application, Nanotechnology 10, 278–284 (1999)

    CAS  Google Scholar 

  202. R.J.A. van den Oetelaar, C.F.J. Flipse: Atomic-scale friction on diamond(111) studied by ultra-high vacuum atomic force microscopy, Surf. Sci. 384, L828–L835 (1997)

    Google Scholar 

  203. M. Enachescu, R.J.A. van den Oetelaar, R.W. Carpick, D.F. Ogletree, C.F.J. Flipse, M. Salmeron: Atomic force microscopy study of an ideally hard contact: The diamond(111) tungsten carbide interface, Phys. Rev. Lett. 81, 1877–1880 (1998)

    CAS  Google Scholar 

  204. B.V. Derjaguin, V.M. Muller, Y. Toporov: Effect of contact deformations on adhesion of particles, J. Colloid Interf. Sci. 53, 314–326 (1975)

    Google Scholar 

  205. M.D. Perry, J.A. Harrison: Universal aspects of the atomic-scale friction of diamond surfaces, J. Phys. Chem. B 99, 9960–9965 (1995)

    CAS  Google Scholar 

  206. R. Neitola, T.A. Pakannen: Ab initio studies on the atomic-scale origin of friction between diamond (111) surfaces, J. Phys. Chem. B 105, 1338–1343 (2001)

    CAS  Google Scholar 

  207. J.A. Harrison, R.J. Colton, C.T. White, D.W. Brenner: Atomistic simulation of the nanoindentation of diamond and graphite surfaces, Mater. Res. Soc. Sym. Proc. 239, 573–578 (1992)

    CAS  Google Scholar 

  208. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner: Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics, Thin Solid Films 260, 205–211 (1995)

    CAS  Google Scholar 

  209. J. Cai, J.-S. Wang: Friction between Si tip and (001)–2 × 1 surface: A molecular dynamics simulation, Comput. Phys. Commun. 147, 145–148 (2002)

    Google Scholar 

  210. D. Mulliah, S.D. Kenny, R. Smith: Modeling of stick-slip phenomena using molecular dynamics, Phys. Rev. B 69, 205407 (2004)

    Google Scholar 

  211. D.W. Brenner: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458–9471 (1990)

    CAS  Google Scholar 

  212. G.J. Ackland, G. Tichy, V. Vitek, M.W. Finnis: Simple n-body potentials for the noble metals and nickel, Philos. Mag. A 56, 735–756 (1987)

    CAS  Google Scholar 

  213. J.P. Biersack, J. Ziegler, U. Littmack: The Stopping and Range of Ions in Solids (Pergamon, Oxford 1985)

    Google Scholar 

  214. J. Cai, J.S. Wang: Friction between a Ge tip and the (001)–2 × 1 surface: A molecular dynamics simulation, Phys. Rev. B 64, 113313 (2001)

    Google Scholar 

  215. A.G. Khurshudov, K. Kato, H. Koide: Nano-wear of the diamond AFM probing tip under scratching of silicon, studied by AFM, Tribol. Lett. 2, 345–354 (1996)

    CAS  Google Scholar 

  216. A. Khurshudov, K. Kato: Volume increase phenomena in reciprocal scratching of polycarbonate studied by atomic-force microscopy, J. Vacuum Sci. Technol. B 13, 1938–1944 (1995)

    CAS  Google Scholar 

  217. M.D. Perry, J.A. Harrison: Molecular dynamics studies of the frictional properties of hydrocarbon materials, Langmuir 12, 4552–4556 (1996)

    CAS  Google Scholar 

  218. M.D. Perry, J.A. Harrison: Molecular dynamics investigations of the effects of debris molecules on the friction and wear of diamond, Thin Solid Films 291, 211–215 (1996)

    Google Scholar 

  219. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner: Effects of chemically-bound, flexible hydrocarbon species on the frictional properties of diamond surfaces, J. Phys. Chem. 97, 6573–6576 (1993)

    CAS  Google Scholar 

  220. J.A. Harrison, D.W. Brenner: Simulated tribochemistry – an atomic-scale view of the wear of diamond, J. Am. Chem. Soc. 116, 10399–10402 (1994)

    CAS  Google Scholar 

  221. Z. Feng, J.E. Field: Friction of diamond on diamond and chemical vapor deposition diamond coatings, Surf. Coat. Technol. 47, 631–645 (1991)

    CAS  Google Scholar 

  222. B.N.J. Persson: Applications of surface resistivity to atomic scale friction, to the migration of hot adatoms, and to electrochemistry, J. Chem. Phys. 98, 1659–1672 (1993)

    CAS  Google Scholar 

  223. B.N.J. Persson, A.I. Volokitin: Electronic friction of physisorbed molecules, J. Chem. Phys. 103, 8679–8683 (1995)

    CAS  Google Scholar 

  224. H. Grabhorn, A. Otto, D. Schumacher, B.N.J. Persson: Variation of the dc-resistance of smooth and atomically rough silver films during exposure to C2H6and C2H4, Surf. Sci. 264, 327–340 (1992)

    CAS  Google Scholar 

  225. A.D. Berman, W.A. Ducker, J.N. Israelachvili: Origin and characterization of different stick-slip friction mechanisms, Langmuir 12, 4559–4563 (1996)

    CAS  Google Scholar 

  226. B.N.J. Persson: Theory of friction – dynamical phase transitions in adsorbed layers, J. Chem. Phys. 103, 3849–3860 (1995)

    CAS  Google Scholar 

  227. B.N.J. Persson, E. Tosatti: Layering transition in confined molecular thin films – nucleation and growth, Phys. Rev. B 50, 5590–5599 (1994)

    CAS  Google Scholar 

  228. H. Yoshizawa, J. Israelachvili: Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules, J. Phys. Chem. 97, 11300–11313 (1993)

    CAS  Google Scholar 

  229. B.N.J. Persson: Theory of friction: Friction dynamics for boundary lubricated surfaces, Phys. Rev. B 55, 8004–8012 (1997)

    CAS  Google Scholar 

  230. U. Landman, W.D. Luedtke, J.P. Gao: Atomic-scale issues in tribology: Interfacial junctions and nano-elastohydrodynamics, Langmuir 12, 4514–4528 (1996)

    CAS  Google Scholar 

  231. P.A. Thompson, M.O. Robbins: Origin of stick-slip motion in boundary lubrication, Science 250, 792–794 (1990)

    CAS  Google Scholar 

  232. T. Kreer, M.H. Müser, K. Binder, J. Klein: Frictional drag mechanisms between polymer-bearing surfaces, Langmuir 17, 7804–7813 (2001)

    CAS  Google Scholar 

  233. T. Kreer, K. Binder, M.H. Müser: Friction between polymer brushes in good solvent conditions: Steady-state sliding versus transient behavior, Langmuir 19, 7551–7559 (2003)

    CAS  Google Scholar 

  234. E. Manias, G. Hadziioannou, G. ten Brinke: Inhomogeneities in sheared ultrathin lubricating films, Langmuir 12, 4587–4593 (1996)

    CAS  Google Scholar 

  235. R.M. Overney, T. Bonner, E. Meyer, M. Reutschi, R. Luthi, L. Howald, J. Frommer, H.J. Guntherodt, M. Fujihara, H. Takano: Elasticity, wear, and friction properties of thin organic films observed with atomic-force microscopy, J. Vacuum Sci. Technol. B 12, 1973–1976 (1994)

    CAS  Google Scholar 

  236. R.M. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Luthi, L. Howald, H.J. Guntherodt, M. Fujihira, H. Takano, Y. Gotoh: Friction measurements on phase-separated thin-films with a modified atomic force microscope, Nature 359, 133–135 (1992)

    CAS  Google Scholar 

  237. R.M. Overney, E. Meyer, J. Frommer, H.J. Guntherodt, M. Fujihira, H. Takano, Y. Gotoh: Force microscopy study of friction and elastic compliance of phase-separated organic thin-films, Langmuir 10, 1281–1286 (1994)

    CAS  Google Scholar 

  238. H.I. Kim, T. Koini, T.R. Lee, S.S. Perry: Systematic studies of the frictional properties of fluorinated monolayers with atomic force microscopy: Comparison of CF3- and CH3-terminated films, Langmuir 13, 7192–7196 (1997)

    CAS  Google Scholar 

  239. P.T. Mikulski, J.A. Harrison: Packing density effects on the friction of n-alkane monolayers, J. Am. Chem. Soc. 123, 6873–6881 (2001)

    CAS  Google Scholar 

  240. M. GarciaParajo, C. Longo, J. Servat, P. Gorostiza, F. Sanz: Nanotribological properties of octadecyltrichlorosilane self-assembled ultrathin films studied by atomic force microscopy: Contact and tapping modes, Langmuir 13, 2333–2339 (1997)

    CAS  Google Scholar 

  241. R.M. Overney, H. Takano, M. Fujihira, E. Meyer, H.J. Guntherodt: Wear, friction and sliding speed correlations on Langmuir-Blodgett films observed by atomic force microscopy, Thin Solid Films 240, 105–109 (1994)

    CAS  Google Scholar 

  242. P.T. Mikulski, J.A. Harrison: Periodicities in the properties associated with the friction of model self-assembled monolayers, Tribol. Lett. 10, 29–35 (2001)

    CAS  Google Scholar 

  243. E. Barrena, C. Ocal, M. Salmeron: A comparative AFM study of the structural and frictional properties of mixed and single component films of alkanethiols on Au(111), Surf. Sci. 482, 1216–1221 (2001)

    Google Scholar 

  244. Y.-S. Shon, S. Lee, R. Colorado, S.S. Perry, T.R. Lee: Spiroalkanedithiol-based SAMS reveal unique insight into the wettabilities and frictional properties of organic thin films, J. Am. Chem. Soc. 122, 7556–7563 (2000)

    CAS  Google Scholar 

  245. P.T. Mikulski, G. Gao, G.M. Chateauneuf, J.A. Harrison: Contact forces at the sliding interface: Mixed versus pure model alkane monolayers, J. Chem. Phys. 122, 024701 (2005)

    Google Scholar 

  246. S. Lee, Y.S. Shon, R. Colorado, R.L. Guenard, T.R. Lee, S.S. Perry: The influence of packing densities, surface order on the frictional properties of alkanethiol self-assembled monolayers (SAMs) on gold: A comparison of SAMs derived from normal and spiroalkanedithiols, Langmuir 16, 2220–2224 (2000)

    CAS  Google Scholar 

  247. G.M. Chateauneuf, P.T. Mikulski, G.T. Gao, J.A. Harrison: Compression- and shear-induced polymerization in model diacetylene-containing monolayers, J. Phys. Chem. B 108, 16626–16635 (2004)

    CAS  Google Scholar 

  248. L. Zhang, S. Jiang: Molecular simulation study of nanoscale friction for alkyl monolayers on Si(111), J. Chem. Phys. 117, 1804–1811 (2002)

    CAS  Google Scholar 

  249. L.Z. Zhang, Y.S. Leng, S.Y. Jiang: Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: Effects of chain length, terminal group, scan direction, and scan velocity, Langmuir 19, 9742–9747 (2003)

    CAS  Google Scholar 

  250. M. Chandross, E.B.W. III, M.J. Stevens, G.S. Grest: Systematic study of the effect of disorder on nanotribology of self-assembled monolayers, Phys. Rev. Lett. 93, 166103 (2004)

    Google Scholar 

  251. M. Chandross, G.S. Grest, M.J. Stevens: Friction between alkylsilane monolayers: Molecular simulation of ordered monolayers, Langmuir 18, 8392–8399 (2002)

    CAS  Google Scholar 

  252. S.B. Sinnott, R. Andrews: Carbon nanotubes: Synthesis, properties and applications, Crit. Rev. Sol. St. Mater. Sci. 26, 145–249 (2001)

    CAS  Google Scholar 

  253. B. Bhushan, B.K. Gupta, G.W. Van Cleef, C. Capp, J.V. Coe: Sublimed C60 films for tribology, Appl. Phys. Lett. 62, 3253–3255 (1993)

    CAS  Google Scholar 

  254. T. Thundat, R.J. Warmack, D. Ding, R.N. Compton: Atomic force microscope investigation of C60 adsorbed on silicon and mica, Appl. Phys. Lett. 63, 891–893 (1993)

    CAS  Google Scholar 

  255. C.M. Mate: Nanotribology studies of carbon surfaces by force microscopy, Wear 168, 17–20 (1993)

    CAS  Google Scholar 

  256. R. Lüthi, E. Meyer, H. Haefke: Sled-type motion on the nanometer scale: Determination of dissipation and cohesive energies of C60, Science 266, 1979–1981 (1993)

    Google Scholar 

  257. R. Lüthi, H. Haefke, E. Meyer, L. Howald, H.-P. Lang, G. Gerth, H.J. Güntherodt: Frictional and atomic-scale study of C60 thin films by scanning force microscopy, Z. Phys. B 95, 1–3 (1994)

    Google Scholar 

  258. Q.-J. Xue, X.-S. Zhang, F.-Y. Yan: Study of the structural transformations of C60/C70 crystals during friction, Chin. Sci. Bull. 39, 819–822 (1994)

    CAS  Google Scholar 

  259. W. Allers, U.D. Schwarz, G. Gensterblum, R. Wiesendanger: Low-load friction behavior of epitaxial C60 monolayers, Z. Phys. B 99, 1–2 (1995)

    CAS  Google Scholar 

  260. U.D. Schwarz, W. Allers, G. Gensterblum, R. Wiesendanger: Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact, Phys. Rev. B 52, 14976–14984 (1995)

    CAS  Google Scholar 

  261. J. Ruan, B. Bhushan: Nanoindentation studies of sublimed fullerene films using atomic force microscopy, J. Mater. Res. 8, 3019–3022 (1996)

    Google Scholar 

  262. U.D. Schwarz, O. Zworner, P. Koster, R. Wiesendanger: Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds, Phys. Rev. B 56, 6987–6996 (1997)

    CAS  Google Scholar 

  263. S. Okita, M. Ishikawa, K. Miura: Nanotribological behavior of C60 films at an extremely low load, Surf. Sci. 442, L959–L963 (1999)

    CAS  Google Scholar 

  264. S. Okita, K. Miura: Molecular arrangement in C60 and C70 films on graphite and their nanotribological behavior, Nano Lett. 1, 101–103 (2001)

    CAS  Google Scholar 

  265. K. Miura, S. Kamiya, N. Sasaki: C60 molecular bearings, Phys. Rev. Lett. 90, 055509 (2003)

    CAS  Google Scholar 

  266. A. Buldum, J.P. Lu: Atomic scale sliding and rolling of carbon nanotubes, Phys. Rev. Lett. 83, 5050–5053 (1999)

    CAS  Google Scholar 

  267. M.R. Falvo, R.M. Taylor, A. Helser, V. Chi, F.P. Brooks, S. Washburn, R. Superfine: Nanometer-scale rolling and sliding of carbon nanotubes, Nature 397, 236–238 (1999)

    CAS  Google Scholar 

  268. M.R. Falvo, J. Steele, R.M.T. II, R. Superfine: Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG, Phys. Rev. B 62, R10664–R10667 (2000)

    Google Scholar 

  269. J.D. Schall, D.W. Brenner: Molecular dynamics simulations of carbon nanotube rolling and sliding on graphite, Mol. Simul. 25, 73–80 (2000)

    CAS  Google Scholar 

  270. B. Ni, S.B. Sinnott: Tribological properties of carbon nanotube bundles, Surf. Sci. 487, 87–96 (2001)

    CAS  Google Scholar 

  271. B. Ni, S.B. Sinnott: Mechanical and tribological properties of carbon nanotubes investigated with atomistic simulations, Nanotubes and related materials. In: Nanotubes and Related Materials, MRS Proceedings, Vol.633 (Materials Research Society, Pittsburgh, PA 2001) pp.A17.13.11–A17.13.15

    Google Scholar 

  272. K. Miura, T. Takagi, S. Kamiya, T. Sahashi, M. Yamauchi: Natural rolling of zigzag multiwalled carbon nanotubes on graphite, Nano Lett. 1, 161–163 (2001)

    CAS  Google Scholar 

  273. K. Miura, M. Ishikawa, R. Kitanishi, M. Yoshimura, K. Ueda, Y. Tatsumi, N. Minami: Bundle structure and sliding of single-walled carbon nanotubes observed by friction-force microscopy, Appl. Phys. Lett. 78, 832–834 (2001)

    CAS  Google Scholar 

  274. P.E. Sheehan, C.M. Lieber: Nanotribology and nanofabrication of MoO3structures by atomic force microscopy, Science 272, 1158–1161 (1996)

    CAS  Google Scholar 

  275. J. Wang, K.C. Rose, C.M. Lieber: Load-independent friction: MoO3nanocrystal lubricants, J. Phys. Chem. B 103, 8405–8408 (1999)

    CAS  Google Scholar 

  276. Q. Ouyang, K. Okada: Nanoballbearing effect of ultra-fine particles of cluster diamond, Appl. Surf. Sci. 78, 309–313 (1994)

    CAS  Google Scholar 

  277. R. Luthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, H.J. Guntherodt: Sled-type motion on the nanometer-scale – determination of dissipation and cohesive energies of C60, Science 266, 1979–1981 (1994)

    Google Scholar 

  278. B. Bhushan, B.K. Gupta, G.W. Vancleef, C. Capp, J.V. Coe: Fullerene (C60) films for solid lubrication, Tribol. Trans. 36, 573–580 (1993)

    CAS  Google Scholar 

  279. U.D. Schwarz, W. Allers, G. Gensterblum, R. Wiesendanger: Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact, Phys. Rev. B 52, 14976–14984 (1995)

    CAS  Google Scholar 

  280. S.B. Legoas, R. Giro, D.S. Galvao: Molecular dynamics simulations of C60 nanobearings, Chem. Phys. Lett. 386, 425–429 (2004)

    CAS  Google Scholar 

  281. P.L. Dickrell, S.B. Sinnott, D.W. Hahn, N.R. Raravikar, L.S. Schadler, P.M. Ajayan, W.G. Sawyer: Frictional anisotropy of oriented carbon nanotube surfaces, Tribol. Lett. 18, 59–62 (2005)

    CAS  Google Scholar 

  282. G.T. Gao, P.T. Mikulski, J.A. Harrison: Molecular-scale tribology of amorphous carbon coatings: Effects of film thickness, adhesion, and long-range interactions, J. Am. Chem. Soc. 124, 7202–7209 (2002)

    CAS  Google Scholar 

  283. F.P. Bowden, D. Tabor: The Friction and Lubrication of Solids, Part 2 (Clarenden, Oxford 1964)

    Google Scholar 

  284. G.T. Gao, P.T. Mikulski, G.M. Chateauneuf, J.A. Harrison: The effects of film structure and surface hydrogen on the properties of amorphous carbon films, J. Phys. Chem. B 107, 11082–11090 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sinnott, S., Heo, SJ., Brenner, D., Harrison, J. (2008). Computer Simulations of Nanometer-Scale Indentation and Friction. In: Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77608-6_13

Download citation

Publish with us

Policies and ethics