Skip to main content

Microbial bioerosion of bone – a review

  • Chapter
Current Developments in Bioerosion

Part of the book series: Erlangen Earth Conference Series ((ERLANGEN))

Abstract

Microbial alteration is an important pathway for bone degradation. Organisms involved in bioerosion of bone, mainly bacteria, fungi and cyanobacteria, create different types of alteration. While fungi and cyanobacteria dissolve the bone matrix resulting in branching tunnels, bacteria create microscopical focal destructions with a complex morphology, reorganising the mineral rather than removing it. Different environmental and early post mortem circumstances characterise each type. Bacterial alteration occurs in the early post mortem interval, probably in the first decades after death. A strong link with putrefaction can be observed, indicating that early putrefactive organisms are important contributors to bacterial alteration of bone. Fungal and cyanobacterial alteration occurs when the environment is favourable, i.e., oxygen is present and bone still has sufficient nutrient value. Although microbial alteration causes loss of information in archaeological and palaeontological bone, the study of microbial bioerosion also represents a powerful tool for taphonomic reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baud CA, Lacotte D (1984) Étude au microscope électronique à transmission de la colonisation bacteriènne de l’os mort. C R Acad Sci Paris 298:507-510

    Google Scholar 

  • Bell LS (1990) Paleopathology and diagenesis; a SEM evaluation of structural changes using backscattered electron imaging. J Archaeol Sci 17:86-102

    Article  Google Scholar 

  • Bell LS, Skinner SMF, Jones J (1996) The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Sci Int 82:129-140

    Article  Google Scholar 

  • Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore, 442 pp

    Google Scholar 

  • Carlisle MJ, Watkinson SC, Gooday GW (2001) The fungi. Acad Press, New York, 588 pp

    Google Scholar 

  • Child AM (1995) Towards an understanding of the microbial decomposition of archaeological bone in the burial environment. Journal of Archaeological Science 22:165-174

    Article  Google Scholar 

  • Collins MJ, Riley MS, Child AM, Turner-Walker G (1995) A basic mathematical model for the chemical degradation of ancient collagen. J Archaeol Sci 22:175-83

    Article  Google Scholar 

  • Colson I, Bailey JF, Vercauteren M, Sykes B, Hedges REM (1997) The preservation of ancient DNA and bone diagenesis. Ancient Biomolecul 1:109-117

    Google Scholar 

  • Cooper A, Poinar HN (2000) Ancient DNA: Do it right or not at all. Science 289:1139

    Article  Google Scholar 

  • Cox M, Bell LS (1999) Recovery of human skeletal elements from a recent UK murder inquiry: preservational signatures. J Forensic Sci 44:945-950

    Google Scholar 

  • Davis PG (1997) Bioerosion of bird bones. Int J Osteoarchaeol 7:388-401

    Article  Google Scholar 

  • Francillon-Vieillot HV, de Buffrenil V, Castanet J, Geraudie J, Meunier FJ, Sire JY, Zylberberg L, de Ricqlès A (1990) Microstructure and mineralization of vertebrate skeletal tissues. In: Carter JG (ed) Skeletal biomineralization: patterns, processes and evolutionary trends. Van Nostrand Reinhold, New York, pp 471-530

    Google Scholar 

  • Fresenius JBGW (1850) Beiträge zur Mykologie. Brönner, Frankfurt a.M., 111 pp

    Google Scholar 

  • Garland AN (1988) A histological study of archaeological bone decomposition. In: Boddington A, Garland AN, Janaway RC (eds) Death, decay and reconstruction. Manchester Univ Press, Manchester, pp 109-126

    Google Scholar 

  • Gilbert MTP, Rudbeck L, Willerslev E, Hansen AJ, Smith C, Penkman K, Prangenberg K, Nielsen-Marsh CM, Jans MME, Arthur P, Lynnerup N, Turner-Walker G, Biddle M, Kjølbye-Biddle B, Collins MJ (2005) Biochemical and physical correlates of DNA contamination in archaeological bones and teeth. J Archaeol Sci 32:785-793

    Article  Google Scholar 

  • Gill CO, Penney N, Nottingham PM (1978) Tissue sterility in uneviscerated carcasses. Appl Environ Microbiol 36:356-359

    Google Scholar 

  • Grupe G, Garland AN (1993) Histology of ancient bone: methods and diagnosis. Springer, Berlin, 223 pp

    Google Scholar 

  • Gutierrez MA (2001) Bone diagenesis and taphonomic history of the Paso Otero 1 bone bed, Pampas of Argentina. J Archaeol Science 28:1277-1290

    Article  Google Scholar 

  • Hackett CJ (1981) Microscopical focal destruction (tunnels) in exhumed human bones. Med Sci Law 21:243-265

    Google Scholar 

  • Hagelberg E, Bell LS, Allen T, Boyde A, Jones SJ, Clegg JB (1991) Analysis of ancient bone DNA – techniques and applications. Phil Trans Roy Soc London, Ser B, 333:1268-1399

    Article  Google Scholar 

  • Hanson DB, Buikstra JE (1987) Histomorphological alteration in buried human bone from the Lower Illinois Valley: Implications for palaeodietary research. J Archaeol Sci 14:549-63

    Article  Google Scholar 

  • Hawker LE, Linton AH (1979) Microorganisms. Function, form and environment. Arnold, London, 400 pp

    Google Scholar 

  • Hedges REM, Millard AR, Pike AWG (1995) Measurements and relationships of diagenetic alteration of bone from three archaeological sites. J Archaeol Sci 22:201-209

    Article  Google Scholar 

  • Hess MW, Klima G, Pfaller K, Künzel KH, Gaber O (1998) Histological investigations on the Tyrolean Ice Man. Amer J Phys Anthropol 106:521-532

    Article  Google Scholar 

  • Jackes M, Sherburne R, Lubell D, Barker C, Wayman M (2001) Destruction of microstructure in archaeological bone: a case study from Portugal. Int J Osteoarchaeol 11:415-432

    Article  Google Scholar 

  • Janaway RC (1987) The preservation of organic materials in association with metal artefacts deposited in inhumation graves. In: Boddington A, Garland AN, Janaway RC (eds) Death, decay and reconstruction. Approaches to archaeology and forensic science. Manchester Univ Press, Manchester, pp 127-148

    Google Scholar 

  • Janaway RC (1996) The decay of buried human remains and their associated materials. In: Hunter J, Roberts C, Martin A (eds) Studies in crime: an introduction to forensic archaeology. Batsford, London, pp 58-85

    Google Scholar 

  • Jans MME (2005) Histological characterisation of the degradation of archaeological bone. PhD Thesis, Inst Geo- Bioarchaeol, Vrije Univ, Amsterdam, 163 pp

    Google Scholar 

  • Jans MME, Kars H, Nielsen-Marsh CM, Smith CI, Nord AG, Arthur P, Earl N (2002) In situ preservation of archaeological bone. A histological study within a multidisciplinary approach. Archaeometry 44:343-352

    Article  Google Scholar 

  • Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H (2004) The characterisation of microbial attack in archaeological bone. J Archaeol Sci 31:87-95

    Article  Google Scholar 

  • Joscheka S, Nies B, Krotz R, Gopferich A (2000) Chemical and physicochemical characterisation of porous hydroxyapatite ceramics made of natural bone. Biomaterials 21:1645

    Article  Google Scholar 

  • Kainer MA, Linden JV, Whaley DN, Holmes HT, Jarvis WR, Jernigan DB, Archibald LK (2004) Clostridiuminfections associated with musculoskeletal allografts. New England J Med 350:2564-2571

    Article  Google Scholar 

  • Kars EAK, Kars H (2002) The degradation of bone as an indicator for the deterioration of the European archaeological property. Final Rep, Rijksdienst Oudheidkundig Bodemonderzoek, Amersfoort, 279 pp

    Google Scholar 

  • Kellerman GD, Waterman BG, Scharfenberger LF (1976) Demonstration in vitro of postmortem bacterial transmigration. Amer J Clinical Pathol 66:911-915

    Google Scholar 

  • Mant AK (1987) Knowledge from post-war exhumations. In: Boddington A, Garland AN, Janaway RC (eds) Death, decay and reconstruction. Approaches to archaeology and forensic science. Manchester Univ Press, Manchester, pp 65-80

    Google Scholar 

  • Marchiafava V, Bonucci L, Ascenzi A (1974) Fungal osteoclasia: a model of dead bone resorption. Calcified Tissue Res 14:195-210

    Article  Google Scholar 

  • Melvin JR, Cronholm LS, Simson LR, Isaacs AM (1984) Bacterial transmigration as an indicator of time of death. J Forensic Sci 29:412-417

    Google Scholar 

  • Millard AM (2001) The deterioration of bone. In: Pollard AM, Brothwell DR (eds) Handbook of archaeological science. Wiley, New York, pp 633-643

    Google Scholar 

  • Nielsen-Marsh CM, Smith CI, Jans MME, Nord A, Kars H, Collins MJ (2007) Bone diagenesis in the European Holocene II: taphonomic and environmental considerations. J Archaeol Sci 34:1523-1531

    Article  Google Scholar 

  • Parker Pearson M, Chamberlain A, Craig O, Marshall P, Mulville J, Smith H, Chenery C, Collins MJ, Cook G, Craig G, Evans J, Hiller J, Montgomery J, Schwenninger J-L, Taylor G, Wess T (2005) Evidence for mummification in Bronze Age Britain. Antiquity 79:529-546

    Google Scholar 

  • Prazmowski A (1880) Untersuchungen über die Entwicklungsgeschichte und Fermentwirkung einiger Bakterien-Arten. Voigt, Leipzig, 58 pp

    Google Scholar 

  • Rodriguez WC, Bass WM (1985) Decomposition of buried bodies and methods that may aid in their location. J Forensic Sci 30:836-852

    Google Scholar 

  • Smith CI, Nielsen-Marsh CM, Jans MME, Collins MJ (2007) Bone diagenesis in the European Holocene I: patterns and mechanisms. J Archaeol Sci 34:1485-1493

    Article  Google Scholar 

  • Solomon CD, Hasse N (1967) Histological and histochemical observations of decalcified sections of ancient bones from excavations in Israel. Israel J Med Sci 3:747-754

    Google Scholar 

  • Stout SD (1978) Histological structure and its preservation in ancient bone. Curr Anthropol 19:601-604

    Article  Google Scholar 

  • Trueman CNG, Martill DM (2002) The long-term survival of bone: the role of bioerosion. Archaeometry 44:371-382

    Article  Google Scholar 

  • Trueman CNG, Behrensmeyer AK, Tuross N, Weiner S (2004) Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park,Kenya: diagenetic mechanisms and the role of sediment pore fluids. J Archaeol Sci 31:721-739

    Article  Google Scholar 

  • Turner-Walker G, Syversen U (2002) Quantifying histological changes in archaeological bones using BSE-SEM image analysis. Archaeometry 44:461-468

    Article  Google Scholar 

  • Turner-Walker G, Nielsen-Marsh CM, Syversen U, Kars H, Collins MJ (2002) Sub-micron spongiform porosity is the major ultrastructural alteration occurring in archaeological bone. Int J Osteoarchaeol 12:407-414

    Article  Google Scholar 

  • Van Heeringen RM, Mauro G, Smit A (2004) A pilot study on the monitoring of the physical quality of three archaeological sites on the Unesco Monument of Schokland, province of Flevoland, the Netherlands. Nederl Archeol Rapp 26, Rijksdienst Oudheidkundig Bodemonderzoek, Amersfoort, 133 pp

    Google Scholar 

  • Wedl C (1864) Ueber einen im Zahnbein und Knochen keimenden Pilz. Akad Wiss Wien, math-natw Kl (I) 50:171-193

    Google Scholar 

  • Weinberg M, Séguin P (1916) Contribution à l’étiologie de la gangrène gazeuse. C R Acad Sci Paris 163:449-451

    Google Scholar 

  • Yamada TK, Kudou T, Takahashi-Iwanaga H (1990) Some 320-year-old soft tissue preserved by the presence of mercury. J Archaeol Sci 17:383-392

    Article  Google Scholar 

  • Yoshino M, Kimijima T, Miyasaka S, Sato H, Seta S (1991) Microscopical study on estimation of time since death in skeletal remains. Forensic Sci Int 49:143-158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jans, M.M. (2008). Microbial bioerosion of bone – a review. In: Wisshak, M., Tapanila, L. (eds) Current Developments in Bioerosion. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77598-0_20

Download citation

Publish with us

Policies and ethics