Skip to main content

Micro-bioerosion in volcanic glass: extending the ichnofossil record to Archaean basaltic crust

  • Chapter
Book cover Current Developments in Bioerosion

Abstract

Microbial bioerosion of volcanic glass produces conspicuous ichnofossils in oceanic crusts that are a valuable tracer of sub-surface microorganisms. Two morphologically distinct granular and tubular ichnofossils are produced. The ‘Granular form’ consists of individual or coalescing, spherical bodies with average diameters of ~0.4 μm. The ‘Tubular form’ are straight, sometimes ranched, to curving and spiralled tubes with average diameters of 1-2 μm and lengths of up to ~200μm. A biogenic origin for these structures is confirmed by: the concentration of DNA that binds to biological stains in recent examples; enrichments in C, N and P along their margins in both recent and ancient examples; and systematic C isotope shifts measured upon disseminated carbonate in the surrounding glass. The constructing microorganisms are thought to include heterotrophs and chemolithoautotrophs that may utilise Fe and Mn from basaltic glass as electron donors and derive carbon sources and electron acceptors from circulating fluids. These microbial ichnofossils are found at depths of up to 550 metres in the oceanic crust in the glassy rims of pillow basalts and interpillow breccias. A diverse spectrum of ichnofabrics is created by overlapping phases of granular and tubular bioerosion; banded abiotic dissolution; and the precipitation of phyllosilicates, zeolites and iron-oxy-hydroxides. The resulting ichnofabrics have been documented from in situ oceanic crust spanning the youngest to the oldest oceanic basins (0 to 170 Ma). Their geological record extends to include meta-volcanic glass in oceanic crustal fragments from Phanerozoic to Proterozoic ophiolites. Examples infilled by the mineral titanite (CaTiSiO4) have also been found in Palaeo- to Mesoarchaean pillow basalts from the Barberton Greenstone Belt of South Africa and the East Pilbara Terrane of Western Australia. Direct 206Pb / 238U radiometric dating of the Australia examples has confirmed their Archaean age and thus they represent the oldest candidate ichnofossils on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt JC, Mata P (2000) On the role of microbes in the alteration of submarine basaltic glass: a TEM study. Earth Planet Sci Lett 181:301-313

    Article  Google Scholar 

  • Banerjee NR, Muehlenbachs K (2003) Tuff life: Bioalteration in volcaniclastic rocks from Ontong Java Plateau. Geochem Geophys Geosyst 4(4), doi: 10.1029/2002GC000470

    Google Scholar 

  • Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H, de Wit M (2006) Preservation of microbial biosignatures in 3.5 Ga pillow lavas from the Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 241:707-72

    Article  Google Scholar 

  • Banerjee NR, Simonetti A, Furnes H, Muehlenbachs K, Staudigel H, Heaman L, Van Kranendonk MJ (2007) Direct dating of Archean microbial ichnofossils. Geology 35:487-490

    Article  Google Scholar 

  • Benzerara K, Menguy N, Banerjee NR, Tyliszczak T, Brown Jr GE, Guyit F (2007) Alteration of submarine basaltic glass from the Ontong Java Plateau: A STXM and TEM study. Earth Planet Sci Lett 260:187-200

    Article  Google Scholar 

  • Brasier MD, McLoughlin N, Green OR, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Phil Trans Roy Soc B 361:887-902

    Article  Google Scholar 

  • Bromley RG (2004) A stratigraphy of marine bioerosion. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc London Spec Publ 228:455-479

    Article  Google Scholar 

  • De Ronde CEJ, de Wit M (1994) Tectonic history of the Barberton greenstone belt, South Africa: 490 million years of Archean crustal evolution. Tectonics 13:983-1005

    Article  Google Scholar 

  • De Wit M (2004) Archean Greenstone Belts do contain fragments of ophiolites. In: Kusky TM (ed) Precambrian ophiolites and related rocks. Dev Precambrian Geol 313:599-614

    Google Scholar 

  • De Wit M, Hart RA, Hart RJ (1987) The Jamestown Ophiolite Complex, Barberton mountain belt: a section through 3.5 Ga oceanic crust. J Afric Earth Sci 6:681-730

    Article  Google Scholar 

  • Des Marais DJ (2000) When did photosynthesis emerge on Earth? Science 289:1703-1705

    Google Scholar 

  • Dilek Y, Shallo M, Furnes H (2005) Rift-drift, seafloor spreading, and subduction tectonics of Albanian ophiolites. Int Geol Rev 47:147-176

    Article  Google Scholar 

  • Edwards KJ, Rogers DR, Wirsen CO, McCollom TM (2003) Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidising, chemolithoautotrophic α- and γ-Proteobacteria from the Deep Sea. Appl Environ Microbiol 69:2906-2913

    Article  Google Scholar 

  • Ehrenberg CG (1836) Vorläufige Mitteilungen über das wirkliche Vorkommen fossiler Infusorien und ihre groβe Verbreitung Poggendorf’s. Ann Phys Chem 38:213–227

    Article  Google Scholar 

  • Einen J, Kruber C, Øvreås L, Thorseth IH, Torsvik T (2006) Microbial colonization and alteration of basaltic glass. Biogeosci Discuss 3:273-307

    Google Scholar 

  • Fisk MR, Giovannoni SJ, Thorseth IH (1998) The extent of microbial life in the volcanic crust of the ocean basins. Science 281:978-979

    Article  Google Scholar 

  • Fisk MR, Popa R, Mason OU, Storrie-Lombardie MC, Vicenzi EP (2006) Iron-magnesium silicate bioweathering on Earth (and Mars?). Astrobiology 6:48-68

    Article  Google Scholar 

  • Furnes H, Muehlenbachs K (2003) Bioalteration recorded in ophiolitic pillow lavas. In: Dilek Y, Robinson PT (eds) Ophiolites in Earth’s History. Geol Soc London Spec Publ 218:415-426

    Article  Google Scholar 

  • Furnes H, Staudigel H (1999) Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet Sci Lett 166:97-103

    Article  Google Scholar 

  • Furnes H, Thorseth IH, Tumyr O, Torsvik T, Fisk MR (1996) Microbial activity in the alteration of glass from pillow lavas from Hole 896A. Proc Ocean Drill Program, Sci Result 148:191-206

    Google Scholar 

  • Furnes H, Hellevang B, Dilek Y (2001a) Cyclic volcanic stratigraphy in a Late Ordovician marginal basin, west Norwegian Caledonides. Bull Volcanol 63:164-178

    Article  Google Scholar 

  • Furnes H, Muehlenbachs K, Torsvik T, Thorseth IH, Tumyr O (2001b) Microbial fractionation of carbon isotopes in altered basaltic glass from the Atlantic Ocean, Lau Basin and Costa Rica Rift. Chem Geol 173:313-330

    Article  Google Scholar 

  • Furnes H, Muehlenbachs K, Tumyr O, Torsvik T, Xenophontos C (2001c) Biogenic alteration of volcanic glass from the Troodos ophiolite, Cyprus. J Geol Soc London 158:75-84

    Article  Google Scholar 

  • Furnes H, Staudigel H, Thorseth IH, Torsvik T, Muehlenbachs K, Tumyr O (2001d) Bioalteration of basaltic glass in the oceanic crust. Geochem Geophys Geosyst 2(8): doi:10.129/2000GC000150

    Google Scholar 

  • Furnes H, Muehlenbachs K, Torsvik T, Tumyr O, Lang S (2002a) Bio-signatures in metabasaltic glass of a Caledonian ophiolite West Norway. Geol Mag 139:601-608

    Article  Google Scholar 

  • Furnes H, Thorseth IH, Torsvik T, Muehlenbachs K, Staudigel H, Tumyr O (2002b) Identifying bio-interaction with basaltic glass in oceanic crust and implications for estimating the depth of the oceanic biosphere: A review. In: Smellie JL, Chapman MG (eds) Volcanoice interactions on Earth and Mars. Geol Soc London Spec Publ 202:407-421

    Article  Google Scholar 

  • Furnes H, Hellevang H, Hellevang B, Skjerlie KP, Robins B, Dilek Y (2003) Volcanic evolution of oceanic crust in a Late Ordovician back-arc basin: The Solund-Stavfjord Ophiolite Complex, West Norway. Geochem Geophys Geosyst 4(10), doi: 10.1029/2003GC000572

    Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, de Wit M (2004) Early life recorded in Archean pillow lavas. Science 304:578-581

    Article  Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Kontinen A (2005) Preservation of biosignatures in the metaglassy volcanic rocks from the Jormua ophiolite complex, Finland. Precambrian Res 136:125-137

    Article  Google Scholar 

  • Furnes H, Dilek Y, Mehlenbachs K, Banerjee NR (2006) Tectonic control of bioalteration in modern and ancient oceanic crust as evidenced by carbon isotopes. Island Arc 15:143-155

    Article  Google Scholar 

  • Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K (2007a) A vestige of Earth’s oldest ophiolite. Science 315:1704-1707

    Article  Google Scholar 

  • Furnes H, Banerjee NR, Staudigel H, Muehlenbachs K, McLoughlin N, de Wit M, Van Kranendonk M (2007b) Comparing petrographic traces of bioalteration in recent to Mesoarchean pillow lavas: tracing subsurface life in oceanic igneous rocks. Precambrian Res 158:156-176

    Article  Google Scholar 

  • Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticusgen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576

    Article  Google Scholar 

  • Giovannoni SJ, Fisk MR, Mullins TD, Furnes H (1996) Genetic evidence for endolithic microbial life colonizing basaltic glass/seawater interfaces. Proc Ocean Drill Program, Sci Result 148:207-214

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475-478

    Google Scholar 

  • Jones J, Goodbody QH (1982) The geological significance of endolithic algae in glass. Canad J Earth Sci 19:671-978

    Google Scholar 

  • Konhauser KO, Schiffman P, Fisher QJ (2002) Microbial mediation of authigenic clays during hydrothermal alteration of basaltic tephras, Kilauea Volcano. Geochem Geophys Geosyst 3(12), doi: 10.1029/2002GC000317

    Google Scholar 

  • Kontinen A (1987) An early Proterozoic ophiolite – the Jormua mafic-ultramafic complex, northeastern Finland. Precambrian Res 35:313-341

    Article  Google Scholar 

  • Krumbein WE, Urzi CECA, Gehrman C (1991) Biocorrosion and biodeterioration of antique and medieval glass. Geomicrobiol J 9:139-160

    Article  Google Scholar 

  • Kusky TM, Li J-H, Tucker RD (2001) The Archean Dongwanzi ophiolite complex, North China craton: 2.505-billion-year-old oceanic crust and mantle. Science 292:1142-1145

    Article  Google Scholar 

  • Lukas KJ, Golubic S (1981) New endolithic cyanophytes from the North Atlantic Ocean: I. Cyanosaccus piriformisgen. et sp. nov. J Phycol 17:224-229

    Article  Google Scholar 

  • Lysnes K, Thorseth IH, Steinsbu BO, Øvreas L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalts from the Arctic spreading ridges. FEMS Microbiol Ecol 50:213-230

    Article  Google Scholar 

  • Matsushita M, Hiramatsu F, Kobayashi N, Ozawa T, Yamazaki Y, Matsuyama T (2004) Colony formation in bacteria: experiments and modeling. Biofilms 1:305-317

    Article  Google Scholar 

  • McKinley JP, Stevens TO, Westall F (2000) Microfossils and paleoenvironments in deep subsurface basalt samples. Geomicrobiol J 17:43-54

    Article  Google Scholar 

  • McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early earth and beyond. Astrobiology 7:10-26

    Article  Google Scholar 

  • Mellor E (1922) Les lichen vitricole et la déterioration dex vitraux d’église. PhD Thesis, Sorbonne, Paris, 128 pp

    Google Scholar 

  • Müller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG (1997) Digital isochrons of the world’s ocean floor. J Geophys Res B 102:3211-3214

    Article  Google Scholar 

  • Nelson DR (2005) Geological Survey of West Australia (GSWA) geochronology dataset. In: Compilation of geochronology data, June 2005 update. Western Australia Geological Survey, autorun compact disc, GSWA 178042

    Google Scholar 

  • Peacock MA (1926) The petrology of Iceland. Part 1. The basic tuffs. Trans Roy Soc Edinburgh 55:53-76

    Google Scholar 

  • Pezard PA, Anderson RN, Ryan WBF, Becker K, Alt JC, Gente P (1992) Accretion, structure and hydrology of intermediate spreading-rate oceanic crust from drill hole experiments and seafloor observations. Mar Geophys Res 14:93-123

    Article  Google Scholar 

  • Pongratz E (1957) D‘une bactérie pediculé isolé d‘un pus de sinus. Schweiz Z Allg Pathol Bakteriol 20:593-608

    Google Scholar 

  • Radtke G (1991) Die mikroendolithischen Spurenfossilien im Alt-Tertiär West Europas und ihre palökologische Bedeutung. Courier Forschinst Senckenberg 138:1-185

    Google Scholar 

  • Ross KA, Fisher RV (1986) Biogenic grooving on glass shards. Geology 14:571-573

    Article  Google Scholar 

  • Schmidt H (1992) Mikrobohrspuren ausgewählter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich und bathymetrische Interpretation). Frankfurter Geowiss Arb A 12:1-228

    Google Scholar 

  • Schmincke H-U, Bednarz U (1990) Pillow, sheet flow and breccia flow volcanoes and volcano-tectonic hydrothermal cycles in the extrusive series of the northeastern Troodos ophiolite (Cyprus). In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) Ophiolites oceanic crustal analogues. Proc Symp ‘Troodos 1987’, Geol Surv Dept, Nicosia, Cyprus, pp 185-206

    Google Scholar 

  • Schumann G, Manz W, Reitner J, Lustrino M (2004) Ancient fungal life in North Pacific Eocene oceanic crust. Geomicrobiol J 21:241-246

    Article  Google Scholar 

  • Simonetti A, Heaman LM, Chacko T, Banerjee NR (2006) In situ petrographic thin section U-Pb dating of zircon, monazite, and titanite using laser ablation-MC-ICP-MS. Int J Mass Spectromet 253:87-97

    Article  Google Scholar 

  • Staudigel H, Hart SR (1983) Alteration of basaltic glass: mechanisms and significance for the oceanic crust-seawater budget. Geochim Cosmochim Acta 47:337-350

    Article  Google Scholar 

  • Staudigel H, Chastain RA, Yayanos A, Bourcier R (1995) Biologically mediated dissolution of glass. Chem Geol 126:119-135

    Article  Google Scholar 

  • Staudigel H, Yayanos A, Chastain R, Davies G, Verdurmen EAT, Schiffman P, Bourcier R, De Baar H (1998) Biologically mediated dissolution of volcanic glass in seawater. Earth Planet Sci Lett 164:233-244

    Article  Google Scholar 

  • Staudigel H, Furnes H, Kelley K, Plank T, Muehlenbachs K, Tebo B, Yayanos A (2004) The oceanic crust as a bioreactor. In: Wilcock W, Delong E, Kelley D, Baross J, Cary S (eds) The subseafloor biosphere at mid-ocean ridges. Geophys Monogr, Ser 144, Amer Geophys Union, pp 325-341

    Google Scholar 

  • Staudigel H, Furnes H, Banerjee NR, Dilek Y, Muehlenbachs K (2006) Microbes and volcanoes: A tale from the oceans, ophiolites and greenstone belts. GSA Today 16(10):4-10

    Article  Google Scholar 

  • Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270(5235):450-454

    Article  Google Scholar 

  • Storrie-Lombardi MC, Fisk MR (2004) Elemental abundance distributions in suboceanic basalt glass: Evidence of biogenic alteration. Geochem Geophys Geosyst 5(10), doi:10.129/2004GC000755

    Google Scholar 

  • Stroncik N, Schmincke H-U (2001) Evolution of palagonite: Crystallization, chemical changes, and element budget. Geochem Geophys Geosyst 2(7), doi:10.1029/2000GC000102

    Google Scholar 

  • Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol J 22:127-139

    Article  Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1991) A textural and chemical study of icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation. Geochim Cosmochim Acta 55:731-749

    Article  Google Scholar 

  • Thorseth IH, Furnes H, Heldal M (1992) The importance of microbiological activity in the alteration of natural basaltic glass. Geochim Cosmochim Acta 56:845-850

    Article  Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1995) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol 119:139-160

    Article  Google Scholar 

  • Thorseth IH, Torsvik T, Torsvik V, Daae FL, Pedersen RB, Keldysh-98 Scientific party (2001) Diversity of life in ocean floor basalts. Earth Planet Sci Lett 194:31-37

    Article  Google Scholar 

  • Thorseth IH, Pedersen RB, Christie DM (2003) Microbial alteration of 0-30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance. Earth Planet Sci Lett 215:237-247

    Article  Google Scholar 

  • Thorseth IH, Kruber C, Hellevang H, Pedersen RB (2007) Seafloor alteration of basaltic glass: Textures, geochemistry and endolithic microorganisms. Geophys Res Abstr 9:09890

    Google Scholar 

  • Torsvik T, Furnes H, Muehlenbachs K, Thorseth IH, Tumyr O (1998) Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth Planet Sci Lett 162:165-176

    Article  Google Scholar 

  • Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-Sci Rev 74:197-240

    Article  Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH, Nelson DN, Pike G (2002) Geology and tectonic evolution of the Archaean North Pilbara terrain, Pilbara Craton, Western Australia. Econ Geol 97:695-732

    Article  Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007) Secular tectonic evolution of Archaean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1-38

    Article  Google Scholar 

  • Walton AW (2005) Petrography of peridophyllic endolithic microborings from hyaloclastites of Kilauea’s Hilina slope: comparison with microborings in HSDP hyaloclastites. Geol Soc Amer Abstr Programmes 37:253

    Google Scholar 

  • Walton AW, Schiffman P (2003) Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core: 1. Description and paragenesis. Geochem Geophys Geosyst 4(5), doi: 10.1029/2002GC000368

    Google Scholar 

  • Walton AW, Schiffman P, Macperson GL (2005) Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core: 2. Mass balance of the conversion of sideromelane to palagonite and chabazite. Geochem Geophys Geosyst 6(9), doi:10.1029/2004GC000903

    Google Scholar 

  • Wilde SA, Cawood PA, Wang KY, Nemchin A, Zhao GC (2004) Determining Precambrian crustal evolution in China: a case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology. In: Malps J, Fletcher CJN, Ali JR, Aichison JC (eds) Aspects of the Tectonic Evolution of China. Geol Soc Spec Publ London 226:5-26

    Article  Google Scholar 

  • Wisshak M, Gektidis M, Freiwald A (2005) Bioerosion along a bathymetric gradient in a cold temperature setting (Kosterfjord, SW Sweden): an experimental study. Facies 51:93-117

    Article  Google Scholar 

  • Zhang Z, Goloubic S (1987) Endolithic microfossils (cyanophyta) from early Proterozoic Stromatolites, Hebei China. Acta Micropaleont Sin 4:1-12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McLoughlin, N. et al. (2008). Micro-bioerosion in volcanic glass: extending the ichnofossil record to Archaean basaltic crust. In: Wisshak, M., Tapanila, L. (eds) Current Developments in Bioerosion. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77598-0_19

Download citation

Publish with us

Policies and ethics