Skip to main content

Biogeographical distribution of Hyrrokkin (Rosalinidae, Foraminifera) and its host-specific morphological and textural trace variability

  • Chapter
Book cover Current Developments in Bioerosion

Part of the book series: Erlangen Earth Conference Series ((ERLANGEN))

Abstract

The parasitic foraminifer Hyrrokkin sarcophagapredominantly infests the cold-water coral Lophelia pertusaand the co-occurring bivalve Acesta excavata, showing a commensal or parasitic behaviour. It occurs also on some other corals (e.g., Caryophyllia sarsiae), bivalves (e.g., Delectopecten vitreus) and sponges (Geodiasp.), typically in aphotic environments. The aim of the study is to describe its traces from various host substrates, to characterise its parasitic behaviour and to map the geographical distribution of the genus Hyrrokkin. Epoxy-resin casts of H. sarcophagatraces in A. excavata C. sarsiae, D. vitreusand L. pertusa,and of H. carnivoratraces in A. excavata, were SEM analysed. The boring pattern is in all cases characterised by a shallow groove of up to 7 mm in diameter (max. 2 mm deep), from which ‘whip’-shaped extensions protrude vertically into the substrate. In A. excavatathe foraminifer can penetrate the entire valve to the mantle cavity, producing a thick shaft of fused ‘whips’. This parasitic attack is answered by a strong callus formation of the mollusc. One individual foraminifer can repeatedly bypass the organic-rich callus, resulting in a thick aragonite pinnacle. The trace surface texture is xenoglyph and changes with the penetrated host-microstructures. This is especially obvious on deeply penetrating trace portions (e.g., ‘whip’-shaped filaments) and is a strong indication for a chemical penetration mode (etching). The trace of Hyrrokkin is described as Kardopomorphos polydioryxigen. n., isp. n. On the substrates without the shaft, related to parasitic behaviour, Hyrrokkinmight feed directly on adjacent external host tissue. H. sarcophagais known along the North Atlantic continental margin from polar to subtropical latitudes and H. carnivoraoccurs on the continental margin of Mauritania, Congo and Guinea. In the Mediterranean we could document the parasitism of H. sarcophagafrom Last Glacial A. excavata.Traces or detached foraminifer tests occur in Early Pleistocene cold-water coral deposits on Sicily and Rhodes. Recent H. sarcophagahas not been observed above 11°C and is scarce near 5°C water temperature. Hyrrokkinsp. was reported from the Canadian Pacific on fossil sponges and was observed on Acesta patagonicain the Beagle Channel (Chile).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam W, Knudsen J (1955) Note sur quelques espèces de mollusques marins nouveaux ou peu connus de l’Afrique occidental. Bull Inst Roy Sci Nat Belg 31(61):1-25

    Google Scholar 

  • Alexander SP, DeLaca TE (1987) Feeding adaptations of the foraminiferan Cibicides refulgensliving epizoically and parasitically on the Antarctic scallop Adamussium colbecki. Biol Bull 173:136-159

    Article  Google Scholar 

  • Baumfalk YA, Fortuin AR, Mok RP (1982) Talpinella cunicularian. gen., n. sp., a possible foraminiferal parasite of Late Cretaceous Orbitoides. J Foram Res 12:185-196

    Article  Google Scholar 

  • Beuck L, Freiwald A (2005) Bioerosion patterns in a deep-water Lophelia pertusa(Scleractinia) thicket (Propeller Mound, northern Porcupine Seabight). In: Freiwald A,Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg, pp915-936

    Chapter  Google Scholar 

  • Beuck L, Vertino A, Stepina E, Karolczak M, Pfannkuche O (2007) Skeletal response of Lophelia pertusa(Scleractinia) to bioeroding sponge infestation visualised with microcomputed tomography. Facies 53:157-176

    Article  Google Scholar 

  • Boss KJ (1965) Note on Lima (Acesta) angolensis. Nautilus 79:54-58

    Google Scholar 

  • Bowerbank JS (1858) On the anatomy and physiology of the Spongiadae. Part I. On thespicula. Phil Trans Roy Soc London 148:279-332

    Article  Google Scholar 

  • Brady HB (1884) Report on the foraminifera dredged by H.M.S. Challenger during the years 1873-1876. Rep Sci Results Voyage H.M.S. Challenger, 1873-1876, Zool 9:1-814

    Google Scholar 

  • Bromley RG (1970) Borings as trace fossils and Entobia cretaceaPortlock, as an example.In: Crimes TP, Harper JC (eds) Trace fossils. Geol J Spec Issue 3:49-90

    Google Scholar 

  • Bromley RG (1981) Concepts in ichnotaxonomy illustrated by small round holes in shells.Acta Geol Hisp 16:55-64

    Google Scholar 

  • Bromley RG (2005) Preliminary study of bioerosion in the deep-water coral Lophelia,Pleistocene, Rhodes, Greece. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg, pp 895-914

    Chapter  Google Scholar 

  • Bromley RG, Martinell J (1991) Centrichnus, new ichnogenus for centrically patterned attachment scars on skeletal substrates. Bull Geol Soc Denmark 38:243-252

    Google Scholar 

  • Bromley RG, Wisshak M, Glaub I, Botquelen A (2007) Ichnotaxonomic review of dendriniform borings attributed to foraminifera: Semidendrinaigen. nov. In: Miller III W (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 518-530

    Google Scholar 

  • Burdon-Jones C, Tambs-Lyche H (1960) Observations on the fauna of the North Brattholmen stone-coral reef near Bergen. Årb Univ Bergen 29:1-24

    Google Scholar 

  • Cedhagen T (1994) Taxonomy and biology of Hyrrokkin sarcophagagen. et sp. n.: a parasitic foraminiferan (Rosalinidae). Sarsia 79:65-82

    Google Scholar 

  • Cherchi A, Schroeder R (1991) Perforations branchues dues à des foraminifers cryptobiotiques dans des coquilles actuelles et fossils. C R Acad Sci Paris, Sér II 312:111-115

    Google Scholar 

  • Cherchi A, Schroeder R (1994) Schizogony of an early Barremian cryptobiotic miliolid. Boll Soc Paleont Ital, Spec Vol 2:61-65

    Google Scholar 

  • DeLaca TE, Lipps JH (1972) The mechanism and adaptative significance of attachment and substrate pitting in the foraminiferan Rosalina globularisD’Orbigny. J Foram Res 2:68-72

    Google Scholar 

  • Fabricius JC (1779) Reise nach Norwegen mit Bemerkungen aus der Naturhistorie und Oekonomie. Bohn, Hamburg, 388 pp

    Google Scholar 

  • Fischer P (1882) Diagnoses d‘espèces nouvelles de mollusques recueillis dans la cours des expéditions scientifiques de l‘aviso le Travailleur (1880 et 1881). J Conchyl 30:49-53

    Google Scholar 

  • Freiwald A, Schönfeld J (1996) Substrate pitting and boring pattern of Hyrrokkin sarcophagaCedhagen, 1994 (Foraminifera) in a modern deep-water coral reef mound. Mar Micropaleont 28:199-207

    Article  Google Scholar 

  • Gmelin JF (1791) Caroli a Linné, systema naturae per regna tria naturae. Editio decima tertia.Beer, Lipsiae, Vol 1, Pars 6, pp 3021-3910

    Google Scholar 

  • Guilbault J-P, Krautter M, Conway KW, Barrie JV (2006) Modern Foraminifera attached to hexactinellid sponge meshwork on the West Canadian shelf: comparison with Jurassic counterparts from Europe. Palaeont Electr 9(1), 48 pp [http://www.palaeo-electronica.org/2006_1/sponge/issue1_06.htm]

    Google Scholar 

  • Gunnerus JE (1763) Om en Søevext, allevegne ligesom besat med Frøehuse, Gorgonia resedæformis. Trondhiem Selsk Skr 2:321-329

    Google Scholar 

  • Harmelin JG (1990) Deep-water crisiids (Bryozoa: Cyclostomata) from the northeast Atlantic Ocean. J Nat Hist 24:1597-1616

    Article  Google Scholar 

  • Heron-Allen E, Earland A (1922) Protozoa, Part II. Foraminifera. Brit Antarct (‘Terra Nova’)Exped 1910, Zool 6(2):25-268

    Google Scholar 

  • Jensen A, Frederiksen R (1992) The fauna associated with the bank-forming deepwater coralLophelia pertusa(Scleractinaria) on the Faroe shelf. Sarsia 77:53-69

    Google Scholar 

  • Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera,species, cum characteribus, differentiis, synonymis, locis. Tomus I.Editio decima,reformata. Laurentii Salvii, Holmiae, 824 pp

    Google Scholar 

  • López Correa M (2004) Evaluation of Acesta excavatafrom fossil Mediterranean and Recent North Atlantic sites as a new tool for palaeoenvironmental studies. MSc Thesis, Univ Tübingen, 69 pp

    Google Scholar 

  • López Correa M, Freiwald A, Hall-Spencer J, Taviani M (2005) Distribution and habitats of Acesta excavata(Bivalvia: Limidae), with new data on its shell ultrastructure. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg, pp 173-205

    Chapter  Google Scholar 

  • Mägdefrau K (1932) Über einige Bohrgänge aus dem unteren Muschelkalk von Jena. PaläontZ 14:150-160

    Google Scholar 

  • Marche-Marchad I (1979) Sur le foraminifère Rosalina carnivoraTodd, 1964 (Discorbidae)parasite d’un Lamellibranche. Bull IFAN, Ser A/1, 41:103-111

    Google Scholar 

  • McCulloch MT, Taviani M, Montagna P, Mortimer G, Remia A (2006) Proliferation and demise of Mediterranean deep-sea corals. Geochim Cosmochim Acta, 70(18), Suppl 1, p A407

    Google Scholar 

  • Montfort D de (1808) Conchyliologie systématique, et classification méthodique des coquilles; offrant leurs figures, leur arrangement générique, leurs descriptions caractéristiques,leurs noms; ainsi que leur synonymie en plusieurs langues. Ouvrage destiné à faciliter l‘étude des coquilles, ainsi que leur disposition dans les cabinets d‘histoire naturelle.Coquilles univalves, cloisonnées. Schoell, Paris, Vol 1, 409 pp

    Google Scholar 

  • Neumann C, Wisshak M (2006) A foraminiferal parasite on the sea urchin Echinocorys:ichnological evidence from the Late Cretaceous (Lower Maastrichtian, Northern Germany). Ichnos 13:185-190

    Article  Google Scholar 

  • Nielsen KSS, Nielsen JK (2001) Bioerosion in Pliocene to late Holocene tests of benthic and planktonic foraminiferans, with a revision of the ichnogenera Oichnusand Tremichnus.Ichnos 8:99-116

    Google Scholar 

  • Nielsen KSS, Nielsen JK, Bromley RG (2003) Palaeoecological and ichnological significance of microborings in Quaternary foraminifera. Palaeont Electr 6(2), 13 pp [http://www.palaeo-electronica.org/2003_1/ichno/issue1_03.htm]

    Google Scholar 

  • Orbigny AD de (1826) Tableau méthodique de la classe des Céphalopodes. Ann Sci Nat Paris, Ser I,7:245-314

    Google Scholar 

  • Parker WK, Jones TR (1860) On the nomenclature of foraminifera. IV. The species enumerated by Lamarck. Ann Mag Nat Hist 3:29-40

    Google Scholar 

  • Parker WK, Jones TR (1865) On some foraminifera from the North Atlantic and Arctic Oceans,including Davis Strait and Baffin’s Bay. Phil Trans Roy Soc London 155:325-441

    Article  Google Scholar 

  • Plewes CR, Palmer TJ, Haynes JR (1993) A boring foraminiferan from the Upper Jurassic of England and Northern France. J Micropalaeont 12:83-89

    Google Scholar 

  • Poag CW (1971) Notes on the morphology and habit of Vasiglobulina alabamensis(Foraminiferida). J Paleont 45: 961-962

    Google Scholar 

  • Radtke G (1991) Die mikroendolithischen Spurenfossilien im Alt-Tertiör West-Europas und ihre palökologische Bedeutung. Courier Forschinst Senckenberg 138:1-185

    Google Scholar 

  • Santos A, Mayoral E (2006) Bioerosive structures of sclerozoan foraminifera from the LowerPliocene of Southern Spain: a contribution to the palaeoecology of marine hard substrate communities. Palaeontology 49:719-73

    Article  Google Scholar 

  • Santos A, Mayoral E, Muñiz F (2005) Bioerosion scars of acorn barnacles from the southwestern Iberian peninsula, Upper Neogene. Riv Ital Paleont Stratigr 111:181-189

    Google Scholar 

  • Schönfeld J (1997) The impact of the Mediterranean Outflow Water (MOW) on benthic foraminiferal assemblages and surface sediments at the southern Portuguese continental margin. Mar Micropaleont 29:211-236

    Article  Google Scholar 

  • Smyth MJ (1988) The foraminifer Cymbaloporella tabellaeformis(Brady) bores into gastropod shells. J Foram Res 18:277-285

    Article  Google Scholar 

  • Sollas WJ (1880) The sponge-fauna of Norway; a report on the Rev. A.M. Norman’s collection of sponges from the Norwegian Coast. Ann Mag Nat Hist, Ser 5, 5:130-144,241-259, 396-409

    Google Scholar 

  • Taviani M, Remia A, Corselli C, Freiwald A, Malinverno E, Mastrototaro F, Savini A, Tursi A (2005) First geo-marine survey of living cold-water Lopheliareefs in the Ionian Sea(Mediterranean basin). Facies 50:409-417

    Article  Google Scholar 

  • Titschack J, Bromley RG (2005) Plio-Pleistocene cliff-bound, wedge-shaped, warm-temperate carbonate deposits from Rhodes (Greece): sedimentology and facies. Sediment Geol 180:29-56

    Article  Google Scholar 

  • Todd R (1965) A new Rosalina(Foraminifera) parasitic on a bivalve. Deep-Sea Res 12:831-837

    Google Scholar 

  • Vénec-Peyré MT (1991) Distribution of living benthic foraminifera on the back-reef and outer slopes of a high island (Moorea, French Polynesia). Coral Reefs 9:193-203

    Article  Google Scholar 

  • Vénec-Peyré MT (1996) Bioeroding foraminifera: a review. Mar Micropaleont 28:19-30

    Article  Google Scholar 

  • Vertino A (2003) Sclerattiniari Plio-Pleistocenici ed attuali del Mediterraneo (Sistematica,Biostratinomia e Paleoecologia). PhD Thesis, Univ Messina, 306 pp

    Google Scholar 

  • Voigt E, Bromley RG (1974) Foraminifera as commensals around clionid sponge papillae:Cretaceous and recent. Senckenbergiana Marit 6:33-45

    Google Scholar 

  • Walker G, Jacob E (1798) In: Kanmacher F (ed) Adams’ essays on the microscope. Dillon and Keating, London, p 642 [Note: this is a reference to an untitled essay]

    Google Scholar 

  • Warme JE (1975) Borings as trace fossils, and the process of marine bioerosion. In: Frey RW (ed) The study of trace fossils. Springer, Berlin Heidelberg, pp 181-227

    Google Scholar 

  • Wisshak M (2006) High-latitude bioerosion: the Kosterfjord experiment. Lect Notes Earth Sci 109:1-202

    Article  Google Scholar 

  • Wisshak M, Freiwald A, Lundölv T, Gektidis M (2005) The physical niche of bathyalLophelia pertusain a non-bathyal setting: environmental controls and palaeoecologicalimplications. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg, pp 979-1001

    Chapter  Google Scholar 

  • Zibrowius H (1974) Caryophyllia sarsiae n. sp. and other recent deep-water Caryophyllia (Scleractinia) previously referred to little known fossil species (C. arcuata, C. cylindracea). J Mar Biol Assoc UK 54:769-784

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beuck, L., Correa, M.L., Freiwald, A. (2008). Biogeographical distribution of Hyrrokkin (Rosalinidae, Foraminifera) and its host-specific morphological and textural trace variability. In: Wisshak, M., Tapanila, L. (eds) Current Developments in Bioerosion. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77598-0_17

Download citation

Publish with us

Policies and ethics