Skip to main content

Echinometrid sea urchins, their trophic styles and corresponding bioerosion

  • Chapter
Current Developments in Bioerosion

Part of the book series: Erlangen Earth Conference Series ((ERLANGEN))

Abstract

The Echinometridae is a diverse, largely tropical family of echinoids. Several species are active borers in shallow water, at and below the low-tide line, especially in coral reef and beachrock substrates, commonly in high-energy situations. In the Caribbean and Atlantic Ocean, Echinometra lucunter erodes two types of boring. Most commonly, the widely reported elongate grooves are produced. In these traps, drifting fragments of algae are caught on the incoming tide. Drifting algae are also caught actively by ‘chopsticks-like’ manoeuvres of the spines. Some simple gardening is undertaken on the boring walls and floor, where short algal turf and endolithic algae are harvested. Juveniles start by making simple cup-shaped borings. In some cases, however, E. lucunter retains this form of bioerosion to adulthood. Cup-shaped borings must indicate emphasis on alga-catching in highenergy environments and less on the gardening, grazing trophic style.

In the Indo – West Pacific realm, Echinometra mathaei undertakes similar trophic activities to those of E. lucunter, especially in the high-energy environment outside barrier reefs. However, in protected shoreward lagoons, another trophic activity is practiced that has largely been overlooked in echinoids. In this oceanic region, a recently identified food-source is available in back-barrier lagoons, i.e., flocs of organic particle aggregates that, like the marine snow of the open sea, are swept into the lagoon on the rising tide from the reef crest, which is subaerially exposed at low tide. Crowded E. mathaei on beachrock surfaces, each in a cup-shaped boring (Circolites isp.), show alga-catching and within-boring algal turf gardening. But in addition, marine snow is collected on the spines at each rising tide.

Echinostrephus molaris, a small echinoid that practices alga-catching on the outer side of the barrier reef, shows extreme specialisation for particle-aggregate collection in back-barrier sites. E. molaris and E. aciculatus are the only deeply boring echinoids, producing thumb-sized borings (Trypanites isp.). Very attenuated, mucus-coated aboral spines are extended from the mouth of the boring as the nutrient flux of the tidal surge climaxes. Quantities of marine snow are collected from the spines by searching tube-feet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agassiz A (1863) List of the echinoderms sent to different institutions in exchange for other specimens. Bull Mus Comp Zool 1:17-28 [not seen]

    Google Scholar 

  • Allouc J, Le Campion-Alsumard T, Leung Tack D (1996) La bioérosion des substrats magmatiques en milieu littoral: l’exemple de la presqu’île du Cap Vert (Sénégal Occidental). Geobios 29:485-502

    Article  Google Scholar 

  • Appana SD, Vuki VC, Cumming RL (2004) Variation in abundance and spatial distribution of ecomorphs of the sea urchins, Echinometra sp. nov. A and E. sp. nov. C on a Fijian reef. Hydrobiologia 518:105-110

    Article  Google Scholar 

  • Bak RPM (1990) Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Mar Ecol Prog Ser 66:267-272

    Article  Google Scholar 

  • Bak RPM (1994) Sea urchin bioerosion on coral reefs: place in the carbonate budget and relevant variables. Coral Reefs 13:99-103

    Article  Google Scholar 

  • Bertram GL (1936) Some aspects of the breakdown of coral at Ghardaqa, Red Sea. Proc Zool Soc London 106:1011-1026

    Google Scholar 

  • Blainville HMD de (1825) Dictionnaire des Sciences Naturelles [ed not indicated]. Levrault, Strasbourg, 37:88 and 94-95 [not seen]

    Google Scholar 

  • Brattström H (1980) Rocky-shore zonation in the Santa Marta area, Colombia. Sarsia 65:163-226

    Google Scholar 

  • Bromley RG (1978) Bioerosion of Bermuda reefs. Palaeogeogr Palaeoclimatol Palaeoecol 18:169-197

    Article  Google Scholar 

  • Brown-Saracino J, Peckol P, Curran HA, Robbart M (2007) Spatial variation in sea urchins, fish predators, and bioerosion rates on coral reefs of Belize. Coral Reefs 26:71-78

    Article  Google Scholar 

  • Campbell AC, Dart JKG, Head SM, Ormond RFG (1973) The feeding activity of Echinostrephus molaris (de Blainville) in the central Red Sea. Mar Behav Physiol 2:155-169

    Article  Google Scholar 

  • Carreiro-Silva M, McClanahan TR (2001) Echinoid bioerosion and herbivory on Kenyan coral reefs: the role of protection from fishing. J Exper Mar Biol Ecol 262:133-153

    Article  Google Scholar 

  • Chartock MA (1983) Habitat and feeding observations on species of Ophiocoma (Ophiocomidae) at Enewetak. Micronesia 19:131-149

    Google Scholar 

  • Chazottes V, Chevillotte V, Dufresne A (2004) Caractérisation de la production particulaire par l’oursin Echinometra mathaei sur les résifs Indo-Pacifiques: influence des peuplements coralliens et implications sur la dynamique sédimentaire. Geobios 37:13-22

    Article  Google Scholar 

  • Dart JKG (1972) Echinoids, algal lawn and coral recolonization. Nature 239:50-51

    Article  Google Scholar 

  • Ekdale AA, Bromley RG, Pemberton SG (1984) Ichnology. Trace fossils in sedimentology and stratigraphy. SEPM Short Course 15, 317 pp

    Google Scholar 

  • Focke JW (1977) The effect of a potentially reef-building vermetid-coralline algal community on an eroding limestone coast, Curaçao, Netherlands Antilles; a preliminary report. Proc 3rd Int Coral Reef Symp, Miami, Florida 1:239-255

    Google Scholar 

  • Grabowsky GL (1994) Symmetry, locomotion, and the evolution of an anterior end: a lesson from sea urchins. Evolution 48:1130-1146

    Article  Google Scholar 

  • Griffin SP, Garcia RP, Weil E (2003) Bioerosion in coral reef communities in southwest Puerto Rico by the sea urchin Echinometra viridis. Mar Biol 143:79-84

    Article  Google Scholar 

  • Grünbaum H, Bergman G, Abbott DP, Ogden JC (1978) Intraspecific agonistic behavior in the rock-boring sea urchin Echinometra lucunter (L.) (Echinodermata: Echinoidea). Bull Mar Sci 28:181-188

    Google Scholar 

  • Hart LJ, Chia F-S (1990) Effect of food supply and body size on the foraging behavior of the burrowing sea urchin Echinometra mathaei (de Blainville). J Exper Mar Biol Ecol 135:99-108

    Article  Google Scholar 

  • Hendler G, Pawson DL (2000) Echinoderms of the Rhomboidal Cays, Belize: Biodiversity, distribution, and ecology. Atoll Res Bull 466-480:275-299

    Google Scholar 

  • Highsmith RC (1980) Passive colonization and asexual colony multiplication in the massive coral Porites lutea Milne Edwards & Haime. J Exper Mar Biol Ecol 47:55-67

    Article  Google Scholar 

  • Hoskin CM, Reed JK, Mook DH (1986) Production and off-bank transport of carbonate sediment, Black Rock, southwest Little Bahama Bank. Mar Geol 73:125-144

    Article  Google Scholar 

  • Huettel M, Wild C, Gonelli S (2006) Mucus trap in coral reefs: formation and temporal evolution of particle aggregates caused by coral mucus. Mar Ecol Prog Ser 307:69-84

    Article  Google Scholar 

  • Hunt M (1969) A preliminary investigation of the habits and habitat of the rock-boring urchin Echinometra lucunter near Devonshire Bay, Bermuda. In: Ginsburg RN, Garret P (eds) Reports of research 1968. Seminar on organism - sediment interrelationships. Bermuda Biol Stn Res Spec Publ 2:35-40

    Google Scholar 

  • Jones A, Sefton N (1979) Marine life of the Caribbean. Macmillan Educ, London, 90 pp

    Google Scholar 

  • Kaye CA (1959) Shoreline features and Quaternary shoreline changes Puerto Rico. U S Geol Surv Prof Pap 317-B, 140 pp

    Google Scholar 

  • Khamala CPM (1971) Ecology of Echinometra mathaei (Echinoidea, Echinodermata) at Diani Beach, Kenya. Mar Biol 11:167-172

    Google Scholar 

  • Kinjo S, Shirayama Y, Wada H (2004) Phylogenetic relationships and morphological diversity in the family Echinometridae (Echinoida, Echinodermata). In: Heinzeller T, Nebelsick JH (eds) Echinoderms: München. Taylor & Francis, London, pp 527-530

    Google Scholar 

  • Lamarck J-B de (1816) Histoire naturelle des animaux sans vertèbres, présentant les caractères généraux et particuliers de ces animaux, leur distribution, leurs classes, leurs familles, leurs genres, et la citation des principales espèces qui s’y rapportent; précédée d’une introduction offrant la détermination des caractères essentiels de l’animal, sa distinction du végétal et des autres corps naturels, enfin, l’exposition des principes fondamentaux de la zoologie. Verdière, Paris, 3:1-586 [not seen]

    Google Scholar 

  • Lawrence JM (1970) Echinostrephus molaris (Blainville) (Echinodermata, Echinoidea) in the Gulf of Elat. Israel J Zool 19:175-176

    Google Scholar 

  • Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Laurentii Salvii, Holmiae, 824 pp

    Google Scholar 

  • Loenhoud PJ van, Sande JCPM van de (1977) Rocky shore zonation in Aruba and Curaçao (Netherlands Antilles), with the introduction of a new general scheme of zonation. I, II. Mar Ecol C 80:437-474

    Google Scholar 

  • Mögdefrau K (1932) Über einige Bohrgönge aus dem Unteren Muschelkalk von Jena. Palöont Z 14:150-160

    Google Scholar 

  • Mörkel K, Maier R (1967) Beobachtungen an lochbewohnenden Seeigeln. Natur Museum 97:233-243

    Google Scholar 

  • Martinell J (1981) Actividad erosiva de Paracentrotus lividus (Lmk.) (Echinodermata, Echinoidea) en el litoral gerundense. Oecol Aquat 5:219-225

    Google Scholar 

  • McCartney MA, Keller G, Lessios HA (2000) Dispersal barriers in tropical oceans and speciation in Atlantic and eastern Pacific sea urchins of the genus Echinometra. Molec Ecol 9:1391-1400

    Article  Google Scholar 

  • McClanahan TR (1988) Coexistence in a sea urchin guild and its implications to coral reef diversity and degradation. Oecologia 77:210-218

    Article  Google Scholar 

  • McClanahan TR, Kurtis JD (1991) Population regulation of the rock-boring sea urchin Echinometra mathaei (de Blainville). J Exper Mar Biol Ecol 147:121-146

    Article  Google Scholar 

  • McGehee A (1992) Distribution and abundance of two species of Echinometra (Echinoidea on coral reefs near Puert Rico). Caribbean J Sci 28:173-183

    Google Scholar 

  • McLean RF (1967) Erosion of burrows in beachrock by the tropical sea urchin, Echinometra lucunter. Canad J Zool 45:586-588

    Article  Google Scholar 

  • Mills SC, Peyrot-Clausade M, Fontaine MF (2000) Ingestion and transformation of algal turf by Echinometra mathaei on Tiahura fringing reef (French Polynesia). J Exper Mar Biol Ecol 254:71-84

    Article  Google Scholar 

  • Mikulá R (1992) Early Cretaceous borings from Stramberk (Czechoslovakia). Casopis pro Mineralogii a Geologii, Roč 37:297-312

    Google Scholar 

  • Mortensen T (1943) A monograph of the Echinoidea 3(3). Camarodonta II. Echinidae, Strongylocentrotidae, Paraseleniidae, Echinometridae. Reitzel, Copenhagen, 446 pp

    Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona lampa. Limnol Oceanogr 11:92-108

    Article  Google Scholar 

  • Neumann AC (1968) Biological erosion of limestone coasts. In: Fairbridge RW (ed) Encyclopedia of geomorphology. Book Corp, New York, 75-81 pp

    Google Scholar 

  • Oak T, Scheibling RE (2006) Tidal activity pattern and feeding behaviour of the ophiuroid Ophiocoma scolopendrina on a Kenyan reef flat. Coral Reefs 25:213-222

    Article  Google Scholar 

  • Ogden JC (1977) Carbonate-sediment production by parrot fish and sea urchins on Caribbean reefs. SEPM Stud Geol 4:281-288

    Google Scholar 

  • Ogden NB, Ogden JC, Abbott IA (1989) Distribution, abundance and food of sea urchins on a leeward Hawaiian reef. Bull Mar Sci 45:539-549

    Google Scholar 

  • Ormond RFG, Campbell AC (1971) Observations on Acanthaster planci and other coral reef echinoderms in the Sudanese Reed Sea. Symp Zool Soc London 28:433-454

    Google Scholar 

  • Otter GW (1932) Rock-burrowing echinoids. Biol Rev 7:89-107

    Google Scholar 

  • Otter GW (1937) Rock-destroying organisms in relation to coral reefs. Sci Rep Great Barrier Reef Exp 1928-29, Brit Mus Nat Hist, London, 1(12):323-352

    Google Scholar 

  • Palumbi SR, Metz EC (1991) Strong reproductive isolation between closely related tropical sea urchins (genus Echinometra). Molecular Biol Evol 8:227-239

    Google Scholar 

  • Prince J (1995) Limited effects of the sea urchin Echinometra mathaei (de Blainville) on the recruitment of benthic algae and macroinvertebrates into intertidal rock platforms at Rottnest Island, Western Australia. J Exper Mar Biol Ecol 186:237-258

    Article  Google Scholar 

  • Russo AR (1977) Water flow and the distribution and abundance of echinoids (Genus Echinometra) on an Hawaiian reef. Austral J Mar Freshwater Res 28:693-702

    Article  Google Scholar 

  • Russo AR (1980) Bioerosion by two rock boring echinoids (Echinometra mathaei and Echinostrephus aciculatus) on Enewetak Atoll, Marshall Islands. J Mar Res 38:99-110

    Google Scholar 

  • Shulman MJ (1990) Aggression among sea urchins on Caribbean coral reefs. J Exper Mar Biol Ecol 140:197-207

    Article  Google Scholar 

  • Steneck RS, Adey WH (1976) The role of environment in control of morphology in Lithophyllum congestum a Caribbean algal ridge builder. Bot Marina 19:197-215

    Article  Google Scholar 

  • Tsuchiya M, Nishihira M (1984) Distribution of two types of the sea-urchin Echinometra mathaei (Blainville) on Okinawan reef flat. Galaxea 3:131-143

    Google Scholar 

  • Wild C, Rasheed M, Werner U, Franke U, Johnstone R, Huettel M (2004) Degradation and mineralization of coral mucus in reef environments. Mar Ecol Prog Ser 267:159-171

    Article  Google Scholar 

  • Wild C, Woyt H, Huettel M (2005) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser 287:87-98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asgaard, U., Bromley, R.G. (2008). Echinometrid sea urchins, their trophic styles and corresponding bioerosion. In: Wisshak, M., Tapanila, L. (eds) Current Developments in Bioerosion. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77598-0_15

Download citation

Publish with us

Policies and ethics