Advertisement

OCT in Dermatology

  • J. Welzel
  • E. Lankenau
  • G. Hüttmann
  • R. Birngruber
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

In all OCT-systems used in dermatology, the intrinsic interferometer required for the depth-resolution (A-scan) is realized in a mono-mode fiber technology (Fig. 35.1). For the so-called time domain OCT (TD-OCT) (Fig. 35.1a), different techniques of moving the reference arm are established. The optical length of the reference arm can be varied by moving mirror systems as well as by fibre stretching. For an optimal axial resolution, the A-scan is synchronized by moving the focus inside the tissue as realized in the SkinDex300 (Isis Optronics GmbH, Germany). Other systems measure without moving the probe focus relative to the tissue, which results in an easier instrumentation, a faster scanning rate, but compromises the lateral resolution. Since 2003, OCT device based on the so-called spectral domain OCT (SD-OCT) (Fig. 35.1b), in which the reference arm has a static position and the interference modulation, detected by a spectrometer, is used to generate the depth information of the A-scan (“Spectral Radar OCT”). The main advantages of this technique are an order of magnitude faster scanning rate and an up to 10dB higher contrast. On the other side, the SD-OCT is phase sensitive, which means that the depth information has to be recorded very fast in order not to destroy the interferometric signal.

Keywords

Stratum Corneum Bullous Pemphigoid Backscatter Light Reference Light Entrance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Golubovic et al., Opt. Lett. 22, 1704 (1997)CrossRefPubMedGoogle Scholar
  2. 2.
    S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Opt. Lett. 22, 340 (1997)CrossRefPubMedGoogle Scholar
  3. 3.
    J.G. Fujimoto, Nat. Biotechnol. 21, 1361 (2003)CrossRefPubMedGoogle Scholar
  4. 4.
    W. Drexler, J. Biomed. Opt. 9, 47 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    A. Unterhuber et al., Phys. Med. Biol. 49, 1235 (2004)CrossRefPubMedGoogle Scholar
  6. 6.
    A. Knüttel, S. Bonev, W. Knaak, J. Biomed. Opt. 9, 265 (2004)CrossRefPubMedGoogle Scholar
  7. 7.
    D.J. Faber et al., Opt. Exp. 12(19), 4353 (2004)CrossRefGoogle Scholar
  8. 8.
    . E. Lankenau, Optische Kohärenztomographie: Dispersive Einflüsse und Anwen-dungen in der medizinischen Diagnostik. Berlin: http://www.dissertation.de -Verlag im Internet GmbH, ISBN 3-89825-674-X, (2003)
  9. 9.
    J. Welzel, M. Bruhns, H.H. Wolff, Arch. Dermatol. Res. 295, 50 (2003)CrossRefPubMedGoogle Scholar
  10. 10.
    G.T. Tearney et al., Opt. Lett. 20, 2258 (1995)CrossRefPubMedGoogle Scholar
  11. 11.
    A.W. Sainter, T.A. King, M.R. Dickinson, J. Biomed. Opt. 9, 193 (2004)CrossRefPubMedGoogle Scholar
  12. 12.
    T.L. Troy, S.N. Thennadil, J. Biomed. Opt. 6, 167 (2001)CrossRefPubMedGoogle Scholar
  13. 13.
    A. Knüttel, M. Boehlau-Godau, J. Biomed. Opt. 5, 83 (2000)CrossRefPubMedGoogle Scholar
  14. 14.
    B.H. Park et al., Opt. Exp. 11, 782 (2003)CrossRefGoogle Scholar
  15. 15.
    V.X.D. Yang et al., Rev. Sci. Instrum. 74, 437 (2003)CrossRefGoogle Scholar
  16. 16.
    J. Kehlet Barton et al., Dermatology 198, 355 (1999)CrossRefPubMedGoogle Scholar
  17. 17.
    S.J. Tang et al., Gastrointest. Endosc. 58, 591 (2003)CrossRefPubMedGoogle Scholar
  18. 18.
    M.C. Pierce et al., J. Invest. Dermatol. 123, 458 (2004)CrossRefPubMedGoogle Scholar
  19. 19.
    J. Strasswimmer et al., J. Biomed. Opt. 9, 292 (2004)CrossRefPubMedGoogle Scholar
  20. 20.
    M.C. Pierce et al., J. Biomed. Opt. 9, 287 (2004)CrossRefPubMedGoogle Scholar
  21. 21.
    M. Pircher et al., Opt. Exp. 12, 3236 (2004)CrossRefGoogle Scholar
  22. 22.
    J.F. de Boer et al., Opt. Exp. 3, 212 (1998)CrossRefGoogle Scholar
  23. 23.
    S.M. Srinivas et al., J. Biomed. Opt. 9, 207 (2004)CrossRefPubMedGoogle Scholar
  24. 24.
    B.E. Applegate et al., Opt. Lett. 29, 2252 (2004)CrossRefPubMedGoogle Scholar
  25. 25.
    J.M. Schmitt, Opt. Exp. 3, 199 (1998)CrossRefGoogle Scholar
  26. 26.
    J. Weissman, T. Hancewicz, P. Kaplan, Opt. Exp. 12, 5760 (2004)CrossRefGoogle Scholar
  27. 27.
    T. Gambichler et al., J. Biomed. Opt. 10, 44008 (2005)CrossRefPubMedGoogle Scholar
  28. 28.
    S. Neerken et al., J. Biomed. Opt. 9, 274 (2004)CrossRefPubMedGoogle Scholar
  29. 29.
    H. Fruhstorfer et al., Clin. Anat. 13, 429 (2000)CrossRefPubMedGoogle Scholar
  30. 30.
    J. Welzel et al., J. Am. Acad. Dermatol. 37, 958 (1997)CrossRefPubMedGoogle Scholar
  31. 31.
    A. Pagnoni et al., Skin Res. Technol. 5, 83 (1999)CrossRefGoogle Scholar
  32. 32.
    N.D. Gladova et al., Skin Res. Technol. 6, 6 (2000)CrossRefGoogle Scholar
  33. 33.
    J. Welzel et al., Br. J. Dermatol. 150, 220 (2004)CrossRefPubMedGoogle Scholar
  34. 34.
    J. Welzel, Skin Res. Technol. 7, 1 (2001)CrossRefPubMedGoogle Scholar
  35. 35.
    F.G. Bechara et al., Skin Res. Technol. 10, 169 (2004)CrossRefPubMedGoogle Scholar
  36. 36.
    A.T. Yeh et al., J. Biomed. Opt. 9, 248 (2004)CrossRefPubMedGoogle Scholar
  37. 37.
    G. Vargas et al., Lasers Surg. Med. 24, 133 (1999)CrossRefPubMedGoogle Scholar
  38. 38.
    G. Vargas et al., Photochem. Photobiol. 77, 541 (2003)CrossRefPubMedGoogle Scholar
  39. 39.
    T. Gambichler et al., Clin. Exp. Dermatol. 30, 79 (2005)CrossRefPubMedGoogle Scholar
  40. 40.
    T. Gambichler et al., Arch. Dermatol. Res. 297, 218 (2005)CrossRefPubMedGoogle Scholar
  41. 41.
    M. Cossmann, J. Welzel, Br. J. Dermatol. 155, 700 (2006)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. Welzel
  • E. Lankenau
  • G. Hüttmann
  • R. Birngruber

There are no affiliations available

Personalised recommendations