Elastic Scattering Spectroscopy and Optical Coherence Tomography

  • A. Wax
  • J. W. Pyhtila
  • C. Yang
  • M. S. Feld
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Elastically scattered light contains information about the scattering medium with which it has interacted. The elastic scattering process can be interpreted as a change in the momentum of light due to its interaction with a scattering object. By analyzing this change in momentum, structural information such as the size, shape and organization of scattering objects can be recovered. Recently, light scattering techniques have been developed for examining biological cells and tissues both in the laboratory and the clinic. These techniques are broadly termed elastic scattering spectroscopy (ESS).

In this chapter, the development of cell and tissue analysis methods based on the combination of ESS and OCT are discussed. Background information consisting of an overview of the advantages and theoretical basis of ESS is presented first. This is followed by a survey of ESS schemes which employ coherence gating to isolate photons which have scattered once. Finally, a review of recent experimental results which use combinations of ESS and OCT methods is presented, including basic validation experiments, studies of in vitro cells and pre-clinical studies of ex vivo tissues.


Fractal Dimension Optical Coherence Tomography Reference Beam Polystyrene Microsphere Angular Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1969).Google Scholar
  2. 2.
    A.G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, No. 3, 34 (1995).CrossRefGoogle Scholar
  3. 3.
    V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C.W. Boone, R.R. Dasari, and M.S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE. J. Sel. Top. Quantum Electron. 7, 887-893 (2001).CrossRefGoogle Scholar
  4. 4.
  5. 5.
    V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L. T. Perelman, and M.S. Feld, “Polarized light scattering spectroscopy for quantitative mea-surement of epithelial cellular structures in situ”, IEEE J. Sel. Top. Quantum Electron., 5, 1019-1026, (1999).CrossRefGoogle Scholar
  6. 6.
    L.T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J.M. Crawford, and M.S. Feld, “Observation of Periodic Fine Structure in Reflectance from Biological Tissue: A New Technique for Measuring Nuclear Size Distribution,” Phys. Rev. Lett. 80, 627-630 (1998).CrossRefGoogle Scholar
  7. 7.
    V. Backman, et al., “Detection of preinvasive cancer cells,” Nature,406, 35 (2000).CrossRefPubMedGoogle Scholar
  8. 8.
    M.B. Wallace, L.T. Perelman, V. Backman, J.M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S.J. Shields, I. Itzkan, R.R. Dasari, J. Van Dam, and M.S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119, 677-682 (2000).CrossRefPubMedGoogle Scholar
  9. 9.
    G. Zonios, L. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. Feld, “Diffuse Reflectance Spectroscopy of Human Adenomatous Colon Polyps In Vivo,” Appl. Opt. 38, 6628-6637 (1999).CrossRefPubMedGoogle Scholar
  10. 10.
    S.G. Demos, and R.R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161-163 (1996).CrossRefPubMedGoogle Scholar
  11. 11.
    I.J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elasticscattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221-228 (2000).CrossRefPubMedGoogle Scholar
  12. 12.
    X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, and S. P Poplack. “Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo” J. Biomed. Opt. 10, 051704 (2005).CrossRefPubMedGoogle Scholar
  13. 13.
    M.G. Muller, T.A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z.M. Wang, C.W. Boone, R.R. Dasari, S.M. Shapshay, and M.S. Feld, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma”. Cancer 97, 1681-1692 (2003).CrossRefPubMedGoogle Scholar
  14. 14.
    I. Georgakoudi, B.C. Jacobson, J. Van Dam, V. Backman, M.B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G.A. Thomas, L.T. Perelman, and M.S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus”. Gastroenterology 120, pp. 1620-1629 (2001).CrossRefPubMedGoogle Scholar
  15. 15.
    I. Georgakoudi, E.E. Sheets, M.G. Muller, V. Backman, C.P. Crum, K. Badizadegan, R.R. Dasari, and M.S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo”. Am. J. Obstet. Gynecol. 186, pp. 374-382 (2002).CrossRefPubMedGoogle Scholar
  16. 16.
    A. Wax, C. Yang, V. Backman, K. Badizadegan, C.W. Boone, R.R. Dasari, and M.S. Feld, “Cell organization and sub-structure measured using angle-resolved low coherence interferometry.” Biophys. J. 82, pp. 2256-2264 (2002).CrossRefPubMedGoogle Scholar
  17. 17.
    Mourant, J.R., T.M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J.P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures”. J. Biomed. Opt. 7, pp. 378-387 (2002); Drezek, R., A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements”. Appl. Opt. 38, pp. 3651-3661 (1999).CrossRefPubMedGoogle Scholar
  18. 18.
    J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scatter-ing from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938 (2005).CrossRefPubMedGoogle Scholar
  19. 19.
    J. W. Goodman, Introduction to Fourier Optics. New York: McGrawHill, 1996.Google Scholar
  20. 20.
    H. K. Roy, Y. Liu, R.K. Wali, Y.L. Kim, A.K. Kromine, M.J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis”. Gastroenterology 126, pp. 1071-1081 (2004).CrossRefPubMedGoogle Scholar
  21. 21.
    M. T. Valentine, A. K. Popp, P. D. Kaplan, and D. A. Weitz, “Microscope-based static light scattering apparatus,” Opt. Lett. 26, 890-892 (2001).CrossRefPubMedGoogle Scholar
  22. 22.
    N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83(3), 1691-1700 (2002).CrossRefPubMedGoogle Scholar
  23. 23.
    C. Yang, L.T. Perelman, A. Wax, R.R. Dasari and M. S. Feld, “Feasibility of Field-Based Light Scattering Spectroscopy,”, J. Biomed. Opt. 5(2), 138 (2000).CrossRefPubMedGoogle Scholar
  24. 24.
    A. Wax, C.H. Yang, R.R. Dasari, and M.S. Feld, “Measurement of angu-lar distributions by use of low-coherence interferometry for light-scattering spectroscopy,” Optics Letters 26(6), 322-324 (2001).CrossRefPubMedGoogle Scholar
  25. 25.
    A. Wax, C. Yang, V. Backman, M. Kalashnikov, R.R. Dasari, and M.S. Feld, “Determination of particle size using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19, 737-744 (2002).CrossRefGoogle Scholar
  26. 26.
    J. W. Pyhtila, R.N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Optics Express 11(25): pp. 3473-3484 (2003).PubMedGoogle Scholar
  27. 27.
    A. Wax, and J.E. Thomas, “Optical heterodyne imaging and Wigner phase space distributions,” Optics Letters 21(18): pp. 1427-1429 (1996).CrossRefPubMedGoogle Scholar
  28. 28.
    R. Leitgeb, R., C.K. Hitzenberger, and A.F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Optics Express 11(8), 889-894 (2003);.J. F. de Boer, et al., “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21): pp. 2067-2069 (2003);. Choma, M.A., et al., “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express 11(18): pp. 2183-2189 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    J. W. Pyhtila, and A. Wax, “Rapid, depth-resolved light scattering mea-surements using Fourier domain, angle-resolved low coherence interferometry,” Optics Express 12(25), 6178-6183 (2004).CrossRefPubMedGoogle Scholar
  30. 30.
    A. Wax, “Low-coherence light-scattering calculations for polydisperse size distributions,” J. Opt. Soc. Am. A 22, 256-261 (2005).CrossRefGoogle Scholar
  31. 31.
    J. W. Pyhtila, and A. Wax, “Coherent light scattering by in vitro cell arrays observed with angle-resolved low-coherence interferometry,” Proc. SPIE Vol. 5690, pp. 334-341, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX; Valery V. Tuchin, Joseph A. Izatt, James G. Fujimoto; Eds. (2005).CrossRefGoogle Scholar
  32. 32.
    V.V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis. SPIE Press, Bellingham, WA (2000).Google Scholar
  33. 33.
    Einstein, A.J., H.S. Wu, and J. Gil, “Self-affinity and lacunarity of chromatin texture in benign and malignant breast epithelial cell nuclei”. Phys. Rev. Lett. 80, pp. 397-400 (1998).CrossRefGoogle Scholar
  34. 34.
    A. Wax, C.H. Yang, M.G. Muller, R. Nines, C.W. Boone, V.E. Steele, G.D. Stoner, R.R. Dasari, and M.S. Feld, “In situ detection of neoplastic trans-formation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry”. Cancer Research 63, pp. 3556-3559 (2003). PubMedGoogle Scholar
  35. 35.
    A. Wax, J.W. Pyhtila, R.N. Graf, R. Nines, C.W. Boone, R.R. Dasari, M.S. Feld, V.E. Steele, and G.D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low coherence interferometry”. J. Biomed. Opt. 10, pp. 051604 (2005).CrossRefPubMedGoogle Scholar
  36. 36.
    J.W. Pyhtila, J.D. Boyer, K.J. Chalut and A. Wax, “Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light scattering spectroscopy,” Opt. Lett. 31, 772-774 (2006).CrossRefPubMedGoogle Scholar
  37. 37.
    T.Q. Xie, D. Mukai, S.G. Guo, M. Brenner, and Z.P. Chen, “Fiber-optic-bundle-based optical coherence tomography”. Opt. Lett. 30, p. 1803-1805 (2005).CrossRefPubMedGoogle Scholar
  38. 38.
    D.C. Adler, T.H. Ko, P.R. Herz, and J.G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation”. Optics Express 12, pp. 5487-5501 (2004); C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13, 5450-5462 (2005).CrossRefGoogle Scholar
  39. 39.
    A. Wax, C.H. Yang, and J.A. Izatt, “Fourier-domain low-coherence interferom-etry for light-scattering spectroscopy”. Opt. Lett. 28, pp. 1230-1232 (2003).CrossRefPubMedGoogle Scholar
  40. 40.
    R.N. Graf, and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry”. Optics Express13, pp.4693-4698 (2005).CrossRefPubMedGoogle Scholar
  41. 41.
    Kulkarni, M.D. and J.A. Izatt, in OSA Technical Digest Series. 1996, Opti-cal Society of America. pp. 59-60; Morgner, U., et al., Spectroscopic optical coherence tomography. Optics Letters, 2000. 25(2): pp. 111-113.Google Scholar
  42. 42.
    Fercher, A.F., W. Drexler, C.K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Progress in Physics 66, 239-303 (2003).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. Wax
  • J. W. Pyhtila
  • C. Yang
  • M. S. Feld

There are no affiliations available

Personalised recommendations