Advertisement

Combined Endoscopic Optical Coherence Tomography and Laser Induced Fluorescence

  • J. K. Barton
  • A. R. Tumlinson
  • U. Utzinger
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Optical coherence tomography (OCT) and laser induced fluorescence (LIF) are promising modalities for tissue characterization in human patients and animal models. OCT detects coherently backscattered light whereas LIF detects fluorescence emission of endogenous biochemicals such as reduced nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), collagen, and fluorescent proteins, or exogenous substances such as cyanine dyes. Given the complimentary mechanisms of contrast for OCT and LIF, the combination of the two modalities could potentially provide more sensitive and specific detection of disease than either modality alone. Sample probes for both OCT and LIF can be implemented using small diameter optical fibers, suggesting a particular synergy for endoscopic applications. In this chapter, the mechanisms of contrast and diagnostic capability for both OCT and LIF are briefly examined. Evidence of complimentary capability is described. Three published combined OCT-LIF systems are reviewed, and existing and potential endoscope designs are illustrated.

Keywords

Optical Coherence Tomography Flavin Adenine Dinucleotide Turbid Medium Optical Coherence Tomography System Biomedical Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. De-Boer, T. E. Milner, M. J. C. van-Gemert and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Optics Letters. 22(12), 934-6 (1997).PubMedGoogle Scholar
  2. 2.
    G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Optics Letters. 24(8), 537-9 (1999).PubMedGoogle Scholar
  3. 3.
    C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Optics Express. 9 (13), (2001).Google Scholar
  4. 4.
    J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J Biomed Opt. 7(3), 359-71 (2002).PubMedGoogle Scholar
  5. 5.
    J. Zang, S. Guo, W. Jung, J. S. Nelson and Z. Chen, “Determination of birefrin-gence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers,” Optics Express. 11(24), (2003).Google Scholar
  6. 6.
    Z. Chen, T. E. Milner, D. Dave and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Optics Letters 22(1), 64-66 (1997).PubMedGoogle Scholar
  7. 7.
    J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Optics Letters 22(18), 1439-1441 (1997).PubMedGoogle Scholar
  8. 8.
    V. X. D. Yang, M. L. Gordon, Bling-Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Optics Express 11(7), (2003).Google Scholar
  9. 9.
    R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Optics Express 11(23), (2003).Google Scholar
  10. 10.
    M. Sticker, C. K. Hitzenberger, R. Leitgeb and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography,” Optics Letters 26(8), 518-20 (2001).PubMedGoogle Scholar
  11. 11.
    C. G. Rylander, D. P. Akkin, T. E. Milner, K. R. Diller and A. J. Welch, “Quan-titative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy,” Optics Letters 29(13), 1509-11 (2004).PubMedGoogle Scholar
  12. 12.
    C. Joo, T. Akkin, B. Cense, B. H. Park and J. F. de-Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Optics Letters 30(16), 2131-3 (2005).PubMedGoogle Scholar
  13. 13.
    C. Yang, “Molecular contrast optical coherence tomography: a review,” Photochem. Photobiol. 81(2), 215-237 (2005).Google Scholar
  14. 14.
    S. A. Boppart, A. L. Oldenburg, Chenyang-Xu and D. L. Marks, “Opti-cal probes and techniques for molecular contrast enhancement in coherence imaging,”  Journal of Biomedical Optics 10(4), 41208-14 (2005).PubMedGoogle Scholar
  15. 15.
    U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Optics Letters 25,111-113 (2003).Google Scholar
  16. 16.
    K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins and J. A. Izatt, “Molecular contrast in optical coherence tomography by use of a pump-probe technique,” Optics Letters 28(5), 340-2 (2003).PubMedGoogle Scholar
  17. 17.
    J. S. Bredfeldt, C. Vinegoni, D. L. Marks and S. A. Boppart, “Molecularly sensitive optical coherence tomography,” Optics Letters 30(5), 495-7 (1977).Google Scholar
  18. 18.
    Y. Jiang, I. Tomov, Y. Wang and Z. Chen, “Second-harmonic optical coherence tomography,” Optics Letters 29(10), 1090-2 (2004).PubMedGoogle Scholar
  19. 19.
    M. V. Sarunic, B. E. Applegate and J. A. Izatt, “Spectral domain second-harmonic optical coherence tomography,” Optics Letters 30(18), 2391-3 (2005).PubMedGoogle Scholar
  20. 20.
    J. K. Barton, J. B. Hoying and C. J. Sullivan, “Use of Microbubbles as an Optical Coherence Tomography Contrast Agent,” Acad. Radiol. 9(S1), S52-S55 (2002).PubMedGoogle Scholar
  21. 21.
    T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Optics Letters 28, 1546-1548 (2003).PubMedGoogle Scholar
  22. 22.
    C. Loo, A. Lin, M. Lee, J. K. Barton, N. Halas, J. West and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol-ogy in Cancer Research and Treatment 3, 33-40 (2004).Google Scholar
  23. 23.
    H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Optics Letters 30(22), 3048-50 (2005).PubMedGoogle Scholar
  24. 24.
    G. Isenburg, M. V. Sivak, A. Chak, R. C. Wong, J. E. Willis, B. Wolf, D. Y. Rowland, A. Das and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, double-blinded study,” Gastrointest Endosc. 62(6), 825-831 (2005).Google Scholar
  25. 25.
    M. J. Manyak, N. D. Gladkova, J. H. Makari, A. M. Schwartz, E. V. Zagaynova, J. M. Zara, R. Iksanov and F. I. Feldchtein, “Evaluation of superficial bladder transitional-cell carcinoma by optical coherence tomography,” J Endourol. 19 (5),570-4 (2005).PubMedGoogle Scholar
  26. 26.
    H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106(13), 1640-5 (2002).PubMedGoogle Scholar
  27. 27.
    B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trillo, M. Kareta, C. P. Delaney, J. T. Conner, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin Gastroenterol Hepatol. 2(12), 1080-7 (2004).PubMedGoogle Scholar
  28. 28.
    P. A. Testoni, B. Mangiavillano, L. Albarello, P. G. Arcidiacono, A. Mariani, E. Masci and C. Doglioni, “Optical coherence tomography to detect epithelial lesions of the main pancreatic duct: an Ex Vivo study,” Am J Gastroenterol. 100 (12), 2777-83 (2005).PubMedGoogle Scholar
  29. 29.
    J. R. Lakowicz. Principles of fluorescence spectroscopy, Kluwer Academic/Plenum, New York, 1999.Google Scholar
  30. 30.
    G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603-632 (1998).PubMedGoogle Scholar
  31. 31.
    M. A. Mycek and B. W. Pogue. Handbook of biomedical fluorescence, Marcel Dekker, New York, 2003.Google Scholar
  32. 32.
    R. Richards-Kortum and Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555-606 (1996).PubMedGoogle Scholar
  33. 33.
    N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89-117 (2000).PubMedGoogle Scholar
  34. 34.
    K. Sokolov, M. Follen and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6, 651-658 (2002).PubMedGoogle Scholar
  35. 35.
    T. Vo-Dinh. Biomedical photonics handbook, CRC Press, Boca Raton, Fla., 2003.Google Scholar
  36. 36.
    T. Galeotti, G. D. V. van Rossum, D. H. Mayer, and B. Chance, “On the fluorescence of NAD(P)H in whole-cell preparation of tumors and normal tissues,” Eur. J. Biochem. 17, 485-49 (1970).PubMedGoogle Scholar
  37. 37.
    B. Chance, “Optical method,” Annu. Rev. Biophys. Biophys. Chem. 20, 1-28 (1991).PubMedGoogle Scholar
  38. 38.
    B. Thorell and B. Chance,“Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry,” J. Biol. Chem.234, 3044-3050 (1959).PubMedGoogle Scholar
  39. 39.
    Policard, “A study on the available aspects of experimental tumours examined by Wood’s light,” C. R. Seances Soc. Biol. Fil. 91, 1423-1424 (1924).Google Scholar
  40. 40.
    F. N. Ghadially, and W. J. Neish, “Porphyrin fluorescence of experimentally produced squamous cell carcinoma,” Nature 188, 1124 (1960).PubMedGoogle Scholar
  41. 41.
    F. N. Ghadially, “Red Fluorescence of Experimentally Induced and Human Tumours,” J. Pathol. Bacteriol. 80, 345 (1960).PubMedGoogle Scholar
  42. 42.
    K. T. Schomacker, J. K. Frisoli, C. Compton, T. J. Flotte, J. M. Richter, N. Nishioka, and T. F. Deutsch, “Ultraviolet Laser-Induced Fluorescence of Colonic Tissue: Basic Biology and Diagnostic Potential,” Las. Surg. Med. 12, 63-78 (1992).Google Scholar
  43. 43.
    K. D. Ashby, J. Wen, P. Chowdhury, T. A. Casey, M. A. Rasmussen, and J. W. Petrich, “Fluorescence of dietary porphyrins as a basis for real-time detection of fecal contamination on meat,” J. Agric. Food Chem. 51, 3502-3507 (2003).PubMedGoogle Scholar
  44. 44.
    L. F. Ma and D. Dolphin, “The metabolites of dietary chlorophylls,” Phyto-chemistry 50, 195-202 (1999).Google Scholar
  45. 45.
    M. B. Ericson, J. Uhre, C. Strandeberg, B. Stenquist, O. Larko, A. M. Wennberg, and A. Rosen, “Bispectral fluorescence imaging combined with texture analysis and linear discrimination for correlation with histopathologic extent of basal cell carcinoma,” Journal of Biomedical Optics 10, 034009 (2005).PubMedGoogle Scholar
  46. 46.
    S. Andersson-Engels, G. Canti, R. Cubeddu, C. Eker, C. af Klinteberg, A. Pifferi, K. Svanberg, S. Svanberg, P. Taroni, G. Valentini, and I. Wang, “Preliminary evaluation of two fluorescence imaging methods for the detection and the delineation of basal cell carcinomas of the skin,” Lasers in Surgery & Medicine 26, 76-82 (2000).Google Scholar
  47. 47.
    E. Endlicher, P. Rummele, F. Hausmann, H. C. Rath, R. Knuchel, R. C. Krieg, J. Scholmerich, and H. Messmann, “Detection of dysplastic lesions by fluorescence in a model of chronic colitis in rats after local application of 5-aminolevulinic acid and its esterified derivatives,” Photochemistry and Photobiology 79, 189-192 (2004).PubMedGoogle Scholar
  48. 48.
    J. Gahlen, J. Stern, J. Pressmar, J. Bohm, R. Holle, and C. Herfarth, “Local 5-aminolevulinic acid application for laser light-induced fluorescence diagnosis of early staged colon cancer in rats,” Lasers in Surgery & Medicine 26, 302-307 (2000).Google Scholar
  49. 49.
    C. Eker, S. Montan, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and delta aminolevulinic acid sensitisation,” Gut 44, 511-518 (1999).PubMedGoogle Scholar
  50. 50.
    M. Csanady, J. G. Kiss, L. Ivan, J. Jori, and J. Czigner, “ALA (5-aminolevulinic acid)-induced protoporphyrin IX fluorescence in the endoscopic diagnostic and control of pharyngo-laryngeal cancer,” European Archives of Oto-Rhino-Laryngology 261, 262-266 (2004).PubMedGoogle Scholar
  51. 51.
    Y. T. Pan, T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography,” Optics Letters 28, 2485-2487 (2003).PubMedGoogle Scholar
  52. 52.
    M. Olivo, W. Lau, V. Manivasager, T. P. Hoon, and C. Christopher, “Flu-orescence confocal microscopy and image analysis of bladder cancer using 5-aminolevulinic acid,” International Journal of Oncology 22, 523-528 (2003).PubMedGoogle Scholar
  53. 53.
    V. Manivasager, P. W. Heng, J. Hao, W. Zheng, K. C. Soo, and M. Olivo, “A study of 5-aminolevulinic acid and its methyl ester used in in vitro and in vivo systems of human bladder cancer,” International Journal of Oncology 22, 313-318 (2003).PubMedGoogle Scholar
  54. 54.
    R. M. Lycette, and R. B. Leslie, “Fluorescence of Malignant Tissue,” Lancet 2,436 (1965).PubMedGoogle Scholar
  55. 55.
    R. R. Alfano, D. B. Tata, J. J. Cordero, P. Tomashefsky, F. W. Longo, and M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE Journal of Quantum Electronics 20, 1507-1511 (1984).Google Scholar
  56. 56.
    N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89-117 (2000).PubMedGoogle Scholar
  57. 57.
    K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr Opin Chem Biol 6, 651-658 (2002).PubMedGoogle Scholar
  58. 58.
    W. K. Huh, R. M. Cestero, F. A. Garcia, M. A. Gold, R. S. Guido, K. McIntyre-Seltman, D. M. Harper, L. Burke, S. T. Sum, R. F. Flewelling, and R. D. Alvarez, “Optical detection of high-grade cervical intraepithelial neoplasia in vivo: results of a 604-patient study,” American Journal of Obstetrics & Gynecology 190, 1249-1257 (2004).Google Scholar
  59. 59.
    S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, E. N. Atkinson, R. R. Richards-Kortum, and M. Follen, “Fluorescence spectroscopy for cervical precancer detection: Is there variance across the menstrual cycle?,” Journal of Biomedical Optics 7, 595-602 (2002).PubMedGoogle Scholar
  60. 60.
    I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” American Journal of Obstetrics & Gynecology 186, 374-382 (2002).Google Scholar
  61. 61.
    Ramanujam, M. Follen, A. Mahadevan, S. Thomsen, G. Staerkel, A. Malpica, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem Photobiol 6, 720-735 (1996).Google Scholar
  62. 62.
    J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Applied Optics 32, 3585-3595 (1993).Google Scholar
  63. 63.
    G. Zonios, L. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. V. Dam, and M. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Applied Optics 38, 6628-6637 (1999).PubMedGoogle Scholar
  64. 64.
    L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nus-rat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Physical Review Letters 80, 627-630 (1998).Google Scholar
  65. 65.
    S. Lam, T. Kennedy, M. Unger, Y. E. Miller, D. Gelmont, V. Rusch, B. Gipe, D. Howard, J. C. LeRiche, A. Coldman, and A. F. Gazdar, “Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy,” Chest 113, 696-702 (1998).PubMedGoogle Scholar
  66. 66.
    P. Pierard, J. Faber, J. Hutsebaut, B. Martin, G. Plat, J. P. Sculier, and V. Ninane, “Synchronous lesions detected by autofluorescence bronchoscopy in patients with high-grade preinvasive lesions and occult invasive squamous cell carcinoma of the proximal airways,” Lung Cancer 46, 341-347 (2004).PubMedGoogle Scholar
  67. 67.
    K. Haussinger, H. Becker, F. Stanzel, A. Kreuzer, B. Schmidt, J. Strausz, S. Cavaliere, F. Herth, M. Kohlhaufl, K. M. Muller, R. M. Huber, U. Pichlmeier, and T. Bolliger, “Autofluorescence bronchoscopy with white light bronchoscopy compared with white light bronchoscopy alone for the detection of precancerous lesions: a European randomised controlled multicentre trial,” Thorax 60, 496-503 (2005).PubMedGoogle Scholar
  68. 68.
    H. Hoshino, K. Shibuya, M. Chiyo, A. Iyoda, S. Yoshida, Y. Sekine, T. Iizasa, Y. Saitoh, M. Baba, K. Hiroshima, H. Ohwada, and T. Fujisawa, “Biological features of bronchial squamous dysplasia followed up by autofluorescence bronchoscopy,” Lung Cancer 46, 187-196 (2004).PubMedGoogle Scholar
  69. 69.
    M. Chiyo, K. Shibuya, H. Hoshino, K. Yasufuku, Y. Sekine, T. Iizasa, K. Hiroshima, and T. Fujisawa, “Effective detection of bronchial preinvasive lesions by a new autofluorescence imaging bronchovideoscope system,” Lung Cancer 48, 307-313 (2005).PubMedGoogle Scholar
  70. 70.
    M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, “Fluores-cence spectroscopy of turbid media: Autofluorescence of the human aorta,” Applied Optics 28, 4286-4292 (1989).Google Scholar
  71. 71.
    S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, and B. Gelebart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Applied Optics 37, 2781-2787 (1998).PubMedGoogle Scholar
  72. 72.
    S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, and R. Richards-Kortum, “Combined ultrasound and fluorescence spec-troscopy for physico-chemical imaging of atherosclerosis,” IEEE Transactions on Biomedical Engineering 42, 121-132 (1995).PubMedGoogle Scholar
  73. 73.
    J. Qu, C. MacAulay, S. Lam, and B. Palcic, “Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements,” Optical Engineering 34, 3334-3343 (1995).Google Scholar
  74. 74.
    J. Y. Qu and J. W. Hua, “Calibrated fluorescence imaging of tissue in vivo,” Applied Physics Letters 78, 4040-4042 (2001).Google Scholar
  75. 75.
    S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, and R. Richards-Kortum, “Combined Ultrasound and Fluorescence Spectroscopy for Physico-Chemical Imaging of Atherosclerosis,” IEEE Transactions on Biomedical Engineering 42, 121-132 (1995).PubMedGoogle Scholar
  76. 76.
    Q. Zhang, M. G. Muller, J. Wu, and M. S. Feld, “Turbidity-free fluorescence spectroscopy of biological tissue,” Optics Letters 25, 1451-1453 (2000).PubMedGoogle Scholar
  77. 77.
    S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplas-tic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” Journal of Biomedical Optics 9, 511-522 (2004).PubMedGoogle Scholar
  78. 78.
    R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, M. Motamedi, “Development of an endoscopic fluorescence image guided OCT probe for oral cancer detection,” Proc. SPIE 4254, 23-30, 2001.Google Scholar
  79. 79.
    R. V. Kuranov, V. V. Sapozhnikova, H. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova. “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes.” Quantum Electronics 32(11), 993-998 (2002).Google Scholar
  80. 80.
    Z. G. Wang, D. B. Durand, M. Schoenberg, and Y. T. Pan, “Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model,” Journal of Urol. 174(6), 2376-81 (2005).Google Scholar
  81. 81.
    U. Utzinger, and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” Journal of Biomedical Optics 8, 121-147 (2003).PubMedGoogle Scholar
  82. 82.
    S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chemical Physics Letters 288, 243-247 (1998).Google Scholar
  83. 83.
    G. M. Dobre, A. G. Podoleanu, and R. B. Rosen, “Simultaneous optical coherence tomography-Indocyanine Green dye fluorescence imaging system for investigations of the eye’s fundus,” Optics Letters 30(1), 58-60 (2005).PubMedGoogle Scholar
  84. 84.
    E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence spectroscopy,” Optics Letters 24, 969-971 (1999).PubMedGoogle Scholar
  85. 85.
    TIE-36 Fluorescence of Optical Glass, in Technical Information, Optics for Devices. 2004, Schott Glass.Google Scholar
  86. 86.
    K. R. Hawkins and P. Yager, “Nonlinear decrease of background fluorescence in polymer thin-films - a survey of materials and how they can complicate fluorescence detection in microTAS,” Lab Chip 3(4), 248-52 (2003).PubMedGoogle Scholar
  87. 87.
    M. J. Hodgin, “Epoxies for optoelectronic packaging; applications and material properties,” Journal of Microelectronics and Electronic Packaging 1(2), 108-116 (2004).Google Scholar
  88. 88.
    American National Standards Institute, “American National Standard for Safe Use of Lasers,” (ANSI, New York, 2000).Google Scholar
  89. 89.
    American Conference of Governmental Industrial Hygienists, “2005 TLVs and BEIs,” (ACGIH, Cincinnati, Ohio, 2005).Google Scholar
  90. 90.
    International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 microm,” Health Phys. 71, 804-819 (1996).Google Scholar
  91. 91.
    International Commission on Non-ionizing Radiation Protection, “Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 microm,” Health Commission on Non-Ionizing Radiation and Protection, “Guidelines on limits of exp Phys. 79, 431-440 (2000).Google Scholar
  92. 92.
    International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation),” Health Phys. 87, 171-186 (2004).Google Scholar
  93. 93.
    International Commission on Non-Ionizing Radiation and Protection, “Guide-lines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 microm),” Health Phys. 73, 539-554 (1997).Google Scholar
  94. 94.
    Center for Devices and Radiological Health, “Guidance for Industry: Electro-optical Sensors for the In Vivo Detection of Cervical Cancer and its Precursors: Submission Guidance for an IDE/PMA,” (US Department of Health and Human Services, New York, 1998).Google Scholar
  95. 95.
    A. F. Fercher, W. Drexler and C. K. Hitzenberger, Optical coherence tomography-principles and applications. Reports on Progress in Physics, 2003. 66(2): pp. 239-303.Google Scholar
  96. 96.
    C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” Journal of Biomedical Optics 8, 237-247 (2003).PubMedGoogle Scholar
  97. 97.
    Z. Changfang, L. Quan, and N. Ramanujam, “Effect of fiber optic probe geom-etry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” Journal of Biomedical Optics 8, 237-247 (2003).Google Scholar
  98. 98.
    T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Applied Optics 41, 4712-4721 (2002).PubMedGoogle Scholar
  99. 99.
    T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Optics Letters 28, 120-122 (2003).PubMedGoogle Scholar
  100. 100.
    T. J. Pfefer, L. S. Matchette, and R. Drezek, “Influence of illumination-collection geometry on fluorescence spectroscopy in multilayer tissue,” Medical & Biological Engineering & Computing 42, 669-673 (2004).Google Scholar
  101. 101.
    J. Wang, P. T. Bender, U. Utzinger, and R. Drezek, “Depth sensitive reflectance measurements using oblique oriented fiber probes,” Journal of Biomedical Optics in print (2006).Google Scholar
  102. 102.
    M. C. Skala, G. M. Palmer, C. F. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers in Surgery and Medicine 34, 25-38 (2004).PubMedGoogle Scholar
  103. 103.
    Q. Liu, and N. Ramanujam, “Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media,” Optics Letters 29, 2034-2036 (2004).PubMedGoogle Scholar
  104. 104.
    T. J. Pfefer, L. S. Matchette, A.M. Ross and M.N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Optics Letters 28(2), 120-2 (2003).PubMedGoogle Scholar
  105. 105.
    T. Papaioannou, N. W. Preyer, Q. Y. Fang, A. Brightwell, M. Carnohan, G. Cottone, R. Ross, L. R. Jones and L. Marcu, “Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm,” Applied Optics 43(14), 2846-60 (2004).PubMedGoogle Scholar
  106. 106.
    C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J Biomed Opt 8(2), 237-47 (2003).PubMedGoogle Scholar
  107. 107.
    T. J. Pfefer, K. T. Schomacker, M. N. Ediger and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl Opt 41(22), 4712-21 (2002).PubMedGoogle Scholar
  108. 108.
    Q. Liu, and N. Ramanujam, “Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media,” Optics Letters 29(17), 2034-6 (2004).PubMedGoogle Scholar
  109. 109.
    M. C. Skala, G. M. Palmer, C. F. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg Med 34(1), 25-38 (2004).PubMedGoogle Scholar
  110. 110.
    R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, A. M. Gillenwater, “Ball lens coupled fiberoptic probe for depth-resolved spectroscopy of epithelial tissue,” Optics Letters 30 (10),1159-61 (2005).PubMedGoogle Scholar
  111. 111.
    A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J Biomed Opt 10(4), 44017 (2005).PubMedGoogle Scholar
  112. 112.
    B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Applied Optics 37(31), 7429-7436 (1998).PubMedGoogle Scholar
  113. 113.
    P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE Journal on Selected Topics in Quantum Electronics 9(2), 314-321 (2003).Google Scholar
  114. 114.
    J. Barton, F. Guzman, and A. Tumlinson “Dual modality instrument for simul-taneous optical coherence tomography imaging and fluorescence spectroscopy,” JBO 9(3), 618-623 (2004).Google Scholar
  115. 115.
    J. Y. Qu, Z. Huang, and Jianwen-Hua, “Excitation and collection geometry insensitive fluorescence imaging of tissue-simulating turbid media,” Appl. Opt. 39(19),3344-3356 (2000).PubMedGoogle Scholar
  116. 116.
    A. R. Tumlinson, L. P. Hariri, U. Utzinger, J. K. Barton,”A miniature endoscope for simultaneous OCT-LIF measurement,” Applied Optics 43:113-121(2004).PubMedGoogle Scholar
  117. 117.
    L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. Gernere, and J. K. Barton, “Endoscopic optical coherence tomography and laser induced fluorescence spectroscopy in murine colon cancer model,” Lasers in Surgery and Medicine, in press.Google Scholar
  118. 118.
    J. B. McNally, N. D. Kirkpatrick, L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, E. W. Gerner, U. Utzinger, and J. K. Barton, “Task Based Imaging of Colon Cancer in a Mouse Model (Apc Min/+),” Applied Optics, in press.Google Scholar
  119. 119.
    E. Kanter, R. M. Walker, S. L. Marion, M. Brewer, P. B. Hoyer, and J. K. Bar-ton, “Dual modality imaging of a novel rat model of ovarian carcinogenesis,” Journal of Biomedical Optics, in press.Google Scholar
  120. 120.
    N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Development of a mul-tivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers in Surgery & Medicine 19, 46-62 (1996).Google Scholar
  121. 121.
    E. Svistun, R. Alizadeh-Naderi, A. El-Naggar, R. Jacob, A. Gillenwater, and R. Richards-Kortum, “Vision enhancement system for detection of oral cavity neoplasia based on autofluorescence,” Head & Neck 26, 205-215 (2004).Google Scholar
  122. 122.
    U. Utzinger, M. Bueeler, S. Oh, D. L. Heintzelman, E. S. Svistun, M. Abd-El-Barr, A. Gillenwater, and R. Richards-Kortum, “Optimal visual perception and detection of oral cavity neoplasia,” IEEE Transactions on Biomedical Engineering 50, 396-399 (2003).PubMedGoogle Scholar
  123. 123.
    M. G. Muller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, R. R. Dasari, S. M. Shapshay, and M. S. Feld, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer 97, 1681-1692 (2003).PubMedGoogle Scholar
  124. 124.
    D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal exci-tation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochemistry & Photobiology 72, 103-113 (2000).Google Scholar
  125. 125.
    C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, “Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer,” Journal of Biomedical Optics 10, 024032 (2005).PubMedGoogle Scholar
  126. 126.
    G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer,” IEEE Transactions on Biomedical Engineering 50, 1233-1242 (2003).PubMedGoogle Scholar
  127. 127.
    T. M. Breslin, F. Xu, G. M. Palmer, C. Zhu, K. W. Gilchrist, and N. Ramanujam, “Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues,” Annals of Surgical Oncology 11, 65-70 (2004).PubMedGoogle Scholar
  128. 128.
    P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy,” Lasers in Surgery & Medicine 21 (5),417-422 (1997).Google Scholar
  129. 129.
    K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers in Surgery & Medicine 12, 63-78 (1992).Google Scholar
  130. 130.
    T. J. Pfefer, D. Y. Paithankar, J. M. Poneros, K. T. Schomacker, and N. S. Nishioka, “Temporally and spectrally resolved fluorescence spectroscopy for the detection of high grade dysplasia in Barrett’s esophagus,” Lasers in Surgery and Medicine 32, 10-16 (2003).PubMedGoogle Scholar
  131. 131.
    M. A. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hortnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52, 28-33 (2003).PubMedGoogle Scholar
  132. 132.
    F. Koenig, F. J. McGovern, H. Enquist, R. Larne, T. F. Deutsch, and K. T. Schomacker, “Autofluorescence guided biopsy for the early diagnosis of bladder carcinoma,” Journal of Urology 159, 1871-1875 (1998).PubMedGoogle Scholar
  133. 133.
    W. C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochemistry & Photobiology 73, 396-402 (2001).Google Scholar
  134. 134.
    A. Sivaramakrishnan and D. Graupe, “Brain tumor demarcation by applying a LAMSTAR neural network to spectroscopy data,” Neurological Research 26, 613-621 (2004).PubMedGoogle Scholar
  135. 135.
    W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24, 1221-1223 (1999).PubMedGoogle Scholar
  136. 136.
    B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Optics Letters 21, 1839-1841 (1996).PubMedGoogle Scholar
  137. 137.
    I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomogra-phy using continuum generation in an air-silica microstructure optical fiber,” Optics Letters 26, 608-610 (2001).PubMedGoogle Scholar
  138. 138.
    N. D. Kirkpatrick, C. P. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, “Endogenous fluorescence spectroscopy of cell suspensions for chemopreventive drug monitoring,” Photochemistry and Photobiology 81, 125-134 (2005).PubMedGoogle Scholar
  139. 139.
    M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semi-conductor nanocrystals as fluorescent biological labels,” Science 281, 2013-2016(1998).PubMedGoogle Scholar
  140. 140.
    A. M. Smith, and S. Nie, “Chemical analysis and cellular imaging with quantum dots,” Analyst 129, 672-677 (2004).PubMedGoogle Scholar
  141. 141.
    J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol. 81, 212-213 (2005).PubMedGoogle Scholar
  142. 142.
    R. C. Benson, and H. A. Kues, “Fluorescence Properties of Indocyanine Green as Related to Angiography,” Phys. Med. Biol. 23, 159-163 (1978).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. K. Barton
  • A. R. Tumlinson
  • U. Utzinger

There are no affiliations available

Personalised recommendations