Using Low Coherent Light for Spectroscopic Information from Tissue

  • D. J. Faber
  • M. C. G. Aalders
  • B. Hermann
  • W. Drexler
  • T. G. van Leeuwen
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Given the large optical bandwidths required for OCT imaging, the combination of OCT with spectroscopic measurements is almost straightforward. In this chapter, the combination of morphologic and spectroscopic information from the OCT signals is discussed. With spectroscopic OCT (SOCT) [1–4], depth localized absorption spectra or spectral backscattering of native or foreign chromophores in the tissue can be measured, which can be used to enhance contrast in the OCT image or to extract functional information from the tissue. The next section will discuss the theoretical basis of SOCT. We start by briefly showing the equivalence of time (depth) and frequency (wave number) domain OCT and how to extract localized spectra from the OCT data. Next, the optical properties of tissue will be discussed. The sensitivity of the spectroscopic measurements is treated. We conclude this chapter with a section describing two major applications of SOCT: enhancing contrast in OCT images through spectral information and the measurement of localized oxygen saturation (functional SOCT).


Short Time Fourier Transform Spectroscopic Information Detector Response Time Celery Stalk Coherence Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.D. Kulkarni, J.A. Izatt, CLEO ’96. Summaries of Papers Presented at the Conference on Lasers and Electro Optics 9 (96CH35899), 1996, pp. 59-60.Google Scholar
  2. 2.
    R. Leitgeb, M. Wojtkowski, A. Kowalczky, C.K. Hitzenberger, M. Sticker, A.F. Fercher, Opt. Lett. 25, 820 (2000).CrossRefPubMedGoogle Scholar
  3. 3.
    J.M. Schmitt, S.H. Xiang, K.M. Yung, J. Opt. Soc. Am. A 15, 2288 (1998).CrossRefGoogle Scholar
  4. 4.
    U. Morgner, W. Drexler, F.X. Kärtner, X.D. Li, C. Pitris, E.P. Ippen, J.G. Fujimoto, Opt. Lett. 2, 111 (2000).CrossRefGoogle Scholar
  5. 5.
    R. Carmona, W. Hwang, B. Torresani, Practical Time-Frequency Analysis (Academic, San Diego, 1998).Google Scholar
  6. 6.
    C. Xu, F. Kamalabadi, S. Boppart, Appl. Opt. 44, 1813 (2005).CrossRefPubMedGoogle Scholar
  7. 7.
    B. Hermann, K. Bizheva, A. Unterhuber, B. Považay, H. Sattmann, L. Schmetterer, A. Fercher, W. Drexler, Opt. Exp. 12, 1677 (2004).CrossRefGoogle Scholar
  8. 8.
    C. Yang, L. McGuckin, J. Simon, M. Choma, B. Applegate, J. Izatt, Opt. Lett. 29,2016 (2004).CrossRefPubMedGoogle Scholar
  9. 9.
    C. Xu, J. Ye, D. Marks, S. Boppart, Opt. Lett. 29, 1647 (2004).CrossRefPubMedGoogle Scholar
  10. 10.
    D. Adler, T. Ko, P. Herz, J. Fujimoto, Opt. Exp. 12, 5487 (2004).CrossRefGoogle Scholar
  11. 11.
    C. Xu, P. Carney, S. Boppart, Opt. Exp. 13, 5450 (2005).CrossRefGoogle Scholar
  12. 12.
    C. Xu, D. Marks, M. Do, S. Boppart, Opt. Exp. 12, 4790 (2004).CrossRefGoogle Scholar
  13. 13.
    J. Schmitt, S. Xiang, K. Yung, J. Opt. Soc. Am. A 15, 2288 (1998).CrossRefGoogle Scholar
  14. 14.
    D. Faber, E. Mik, M. Aalders, T. van Leeuwen, Opt. Lett. 28, 1436 (2003).CrossRefPubMedGoogle Scholar
  15. 15.
    D.J. Faber, M.C.G. Aalders, E.G. Mik, B.A. Hooper, M.J.C. van Gemert, T.G. van Leeuwen, Phys. Rev. Lett. 93, 028102 (2004).CrossRefPubMedGoogle Scholar
  16. 16.
    D. Faber, E. Mik, M. Aalders, T. van Leeuwen, Opt. Lett. 30, 1015 (2005).CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • D. J. Faber
  • M. C. G. Aalders
  • B. Hermann
  • W. Drexler
    • 1
  • T. G. van Leeuwen
  1. 1.School of Optometry and Vision SciencesCardiff UniversityCardiffUK

Personalised recommendations