Advertisement

Holographic Optical Coherence Imaging

  • D. D. Nolte
  • K. Jeong
  • P. M. W. French
  • J. Turek
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Holographic optical coherence imaging (OCI) is a wide-field depth-gated direct imaging approach that acquires en face images from a fixed depth inside scattering media without the need for computed reconstruction [1]. A holographic real-time film (most commonly a photorefractive quantum well structure [2]) provides the coherent demodulation that extracts information-bearing light from the multiply-scattered statistically incoherent background. The photorefractive effect responds to the gradient in intensity, rather than to direct intensity, and records only coherent light interfering with a reference wave. The hologram is read out by diffracting a reconstruction beam into a CCD camera. The diffracted image is “background free” because the nominally uniform background is not recorded. The real-time character of the holographic film makes it possible to interrogate tissue interactively by viewing on a video monitor, or enables high voxel-rate recording to capture relatively large tissue volumes to computer. The real-time character also makes it adaptive and enables it to compensate mechanical motions in the optical system.

This chapter gives an overview of the principles of holographic OCI. It begins with a description of holography as spatial heterodyne detection, and continues with the origin and role of speckle in multichannel illumination of tissue, the development of the technology, its sensitivity and dynamic range, and the current state of the art. The introductory sections describe the advantages of direct imaging (without computed reconstruction), the ability to perform Fourier optical imaging, and the role of speckle and statistical optics. Image-domain holography (IDH) and Fourier-domain holography (FDH) are described, and the better performance of FDH (that brings the system sensitivity to nearly – 100 dB) is explained. Holography in the Fourier domain also has the capability for phase-contrast imaging that can acquire small sub-wavelength surface relief despite long coherence length. Phase contrast coherence-domain imaging can detect long-range spatial structure that is invisible to point-scanning TD-OCT.

Keywords

Necrotic Core Signal Beam Tumor Spheroid Photorefractive Crystal Holographic Recording 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Jeong, L. Peng, J.J. Turek, M.R. Melloch, D.D. Nolte, Appl. Opt., 44, 1798 (2005).CrossRefPubMedGoogle Scholar
  2. 2.
    D.D. Nolte, J. Appl. Phys., 85, 6259 (1999).CrossRefGoogle Scholar
  3. 3.
    J.D. Briers, Opt. Eng. 32, 277 (1993).CrossRefGoogle Scholar
  4. 4.
    V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, Bellingham, 2000).Google Scholar
  5. 5.
    C. Dunsby, P.M.W. French, J. Phys. D 36, R207 (2003).CrossRefGoogle Scholar
  6. 6.
    K.A. Stetson, J. Opt. Soc. Am. 57, 1060 (1967).CrossRefGoogle Scholar
  7. 7.
    K.G. Spears, J. Serafin, N.H. Abramson, X. Zhu, H. Bjelkhagen, IEEE Trans. Biomed. Eng. 36, 1210 (1989).CrossRefPubMedGoogle Scholar
  8. 8.
    H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, Opt. Lett. 16,487 (1991).CrossRefPubMedGoogle Scholar
  9. 9.
    P. Massatsch, F. Charriere, E. Cuche, P. Marquet, C.D. Depeursinge, Appl. Opt. 44, 1806 (2005).CrossRefPubMedGoogle Scholar
  10. 10.
    S.C.W. Hyde, R. Jones, N.P. Barry, J.C. Dainty, P.M.W. French, K. M. Kwolek, D.D. Nolte, M.R. Melloch, IEEE J. Sel. Top. Quant. Electron., 2, 965 (1996).CrossRefGoogle Scholar
  11. 11.
    S.H. Yun, G.J. Tearney, J.F.d. Boer, N. Iftimia, B.E. Bouma, Opt. Express 11, 2953 (2003).CrossRefPubMedGoogle Scholar
  12. 12.
    L. Vabre, A. Dubois, A.C. Boccara, Opt. Lett. 27, 530 (2002).CrossRefPubMedGoogle Scholar
  13. 13.
    M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, Appl. Phys. Lett. 75, 363 (1999).CrossRefGoogle Scholar
  14. 14.
    C. Dunsby, Y. Gu, Z. Ansari, P.M.W. French, L. Peng, P. Yu, M.R. Melloch, D.D. Nolte, Opt. Commun., 219, 87 (2003).CrossRefGoogle Scholar
  15. 15.
    A.V. Mamaev, L.L. Ivleva, N.M. Polozkov, V.V. Shkunov, Photorefractive visu-alisation through opaque scattering media, Paper presented at Conference on Lasers and Electro-Optics, 1993.Google Scholar
  16. 16.
    S.C.W. Hyde, N.P. Barry, R. Jones, J.C. Dainty, P.M.W. French, Opt. Lett. 20, 2330 (1995).CrossRefPubMedGoogle Scholar
  17. 17.
    N.P. Barry, R. Jones, S.C.W. Hyde, J.C. Dainty, P.M.W. French, Electron. Lett. 33,1732 (1997).CrossRefGoogle Scholar
  18. 18.
    Q.N. Wang, R.M. Brubaker, D.D. Nolte, M.R. Melloch, J. Opt. Soc. Am. B 9, 1626 (1992).CrossRefGoogle Scholar
  19. 19.
    R. Jones, S.C.W. Hyde, M.J. Lynn, N.P. Barry, J.C. Dainty, P.M. W. French, K.M. Kwolek, D.D. Nolte, M.R. Melloch, Appl. Phys. Lett. 69, 1837 (1996).CrossRefGoogle Scholar
  20. 20.
    R. Jones, N.P. Barry, S.C.W. Hyde, P.M.W. French, K.M. Kwolek, D. D. Nolte, M.R. Melloch, Opt. Lett. 23, 103 (1998).CrossRefPubMedGoogle Scholar
  21. 21.
    Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C.W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P.M.W. French, D.D. Nolte, W. Headley, M.R. Melloch, Sel. Top. Quant. Electron. 7, 878 (2001).CrossRefGoogle Scholar
  22. 22.
    M. Tziraki, R. Jones, P.M.W. French, M.R. Melloch, D.D. Nolte, Appl. Phys. B 70 151 (2000)CrossRefGoogle Scholar
  23. 23.
    R. Jones, N.P. Barry, S.C.W. Hyde, M. Tziraki, J.C. Dainty, P.M. W. French, D.D. Nolte, K.M. Kwolek, M.R. Melloch, IEEE J. Sel. Top. Quant. Electron. 4 360 (1998).CrossRefGoogle Scholar
  24. 24.
    P. Yu, M. Mustata, P.M.W. French, J.J. Turek, M.R. Melloch, D.D. Nolte, Appl. Phys. Lett. 83 575 (2003).CrossRefGoogle Scholar
  25. 25.
    Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P.M.W. French, D.D. Nolte, M.R. Melloch, Opt. Lett. 26, 334 (2001).CrossRefPubMedGoogle Scholar
  26. 26.
    P. Yu, M. Mustata, W. Headley, D.D. Nolte, J.J. Turek, P.M.W. French, in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, SPIE, vol. 4619 (2002).Google Scholar
  27. 27.
    P. Yu, M. Mustata, L.L. Peng, J.J. Turek, M.R. Melloch, P.M. W. French, D.D. Nolte, Appl. Opt. 43 4862 (2004).CrossRefPubMedGoogle Scholar
  28. 28.
    P. Yu, L. Peng, M. Mustata, J.J. Turek, M.R. Melloch, D.D. Nolte, Opt. Lett. 29,68 (2004).CrossRefPubMedGoogle Scholar
  29. 29.
    K. Jeong, L.L. Peng, D.D. Nolte, and M.R. Melloch, Appl. Opt. 43, 3802 (2004).CrossRefPubMedGoogle Scholar
  30. 30.
    K. Jeong, J.J. Turek, D.D. Nolte, Phase-contrast optical coherence imaging of tissue, Paper presented at Progress in Biomedical Optics and Imaging -Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, 2005.Google Scholar
  31. 31.
    D.D. Nolte, D.H. Olson, G.E. Doran, W.H. Knox, A.M. Glass, J. Opt. Soc. Am. B7, 2217 (1990).Google Scholar
  32. 32.
    D.D. Nolte, U.S. Patent No. 5,004,325, 1991Google Scholar
  33. 33.
    D.D. Nolte, T. Cubel, L.J. Pyrak-Nolte, and M.R. Melloch, J. Opt. Soc. Am. B, 18, 195 (2001).CrossRefGoogle Scholar
  34. 34.
    I. Lahiri, L.J. Pyrak-Nolte, D.D. Nolte, M.R. Melloch, R.A. Kruger, G.D. BAcher, M.B. Klein, Appl. Phys. Lett. 73, 1041 (1998).CrossRefGoogle Scholar
  35. 35.
    Y. Ding, R.M. Brubaker, D.D. Nolte, M.R. Melloch, A.M. Weiner, Opt. Lett. 22,718 (1997).CrossRefPubMedGoogle Scholar
  36. 36.
    Y. Ding, D.D. Nolte, M.R. Melloch, A.M. Weiner, IEEE J. Sel. Top. Quant. Electron. 4, 332 (1998).CrossRefGoogle Scholar
  37. 37.
    Y. Ding, A.M. Weiner, M.R. Melloch, D.D. Nolte, Appl. Phys. Lett. 75 3255 (1999).CrossRefGoogle Scholar
  38. 38.
    S. Iwamoto, H. Kageshima, T. Yuasa, M. Nishioka, T. Someya, Y. Arakawa, K. Fukutani, T. Shimura, K. Kuroda, J. Appl. Phys. 89 5889 (2001).CrossRefGoogle Scholar
  39. 39.
    S. Iwamoto, S. Taketomi, H. Kageshima, M. Nishioka, T. Someya, Y. Arakawa, K. Fukutani, T. Shimura, K. Kuroda, Opt. Lett. 26 22 (2001).CrossRefPubMedGoogle Scholar
  40. 40.
    M. Dinu, K. Nakagawa, M.R. Melloch, A.M. Weiner, D.D. Nolte, J. Opt. Soc. Am. B 17, 1313 (2000).CrossRefGoogle Scholar
  41. 41.
    M. Dinu, D.D. Nolte, M.R. Melloch, Phys. Rev. B, 56 1987 (1997).CrossRefGoogle Scholar
  42. 42.
    A.M. Davis, M.A. Choma, J.A. Izatt, J. Biomed. Opt. 10 (2005).Google Scholar
  43. 43.
    C.A. Tyson, J.M. Frazier, in Methods in Toxicology, vol. 1B (Academic New York, 1994).Google Scholar
  44. 44.
    L. de Ridder, Anticancer Res., 17, 4119 (1997).PubMedGoogle Scholar
  45. 45.
    K. Groebe, W. Mueller-Klieser, Int. J. Radiat. Oncol. Biol. Phys. 34, 395 (1996).PubMedGoogle Scholar
  46. 46.
    R. Hamamoto, K. Yamada, M. Kamihira, S. Iijima, J. Biochem. (Tokyo) 124, 972 (1998).Google Scholar
  47. 47.
    G. Hamilton, Cancer Lett., 131, 29 (1998).CrossRefPubMedGoogle Scholar
  48. 48.
    P. Hargrave, P.W. Nicholson, D.T. Delpy, M. Firbank, Phys. Med. Biol. 41, 1067 (1996)CrossRefPubMedGoogle Scholar
  49. 49.
    L.A. Kunz-Schughart, M. Kreutz, R. Knuechel, Int. J. Exp. Pathol. 79, 1 (1998).CrossRefPubMedGoogle Scholar
  50. 50.
    R. Sutherland, W. Inch, J. McCredie, J. Kruuv, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 18, 491 (1970).CrossRefPubMedGoogle Scholar
  51. 51.
    L.A. Kunz-Schughart, Cell Biol. Int. 23, 157 (1999).CrossRefPubMedGoogle Scholar
  52. 52.
    W. Mueller-Klieser, Biophys. J. 46, 343 (1984).CrossRefPubMedGoogle Scholar
  53. 53.
    P. Freyer, P.L. Schor, K.A. Jarrett, M. Neeman, L.O. Sillerud, Cancer Res., 51, 3831 (1991).PubMedGoogle Scholar
  54. 54.
    W. Mueller-Klieser, Am. J. Physiol., 1109 (1997).Google Scholar
  55. 55.
    M. Mustata, Master’s Thesis in Physics (Purdue, West Lafayette, 2004).Google Scholar
  56. 56.
    D.E. Moreland, in Introduction to Biochemical Toxicology, 3rd ed. ed. by E. Hodgson, R.C. Smart (Wiley, New York 2001) p. 309.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • D. D. Nolte
  • K. Jeong
  • P. M. W. French
  • J. Turek

There are no affiliations available

Personalised recommendations