Optical Design for OCT

  • Z. Hu
  • A. M. Rollins
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

This chapter aims to provide insights and tools to design high-quality optical subsystems for OCT. First, we discuss the various optical subsystems common to OCT and relevant optical design criteria. Second, we review several fundamental optical design principles important for OCT designs. Finally, we discuss a number of examples of designed optical systems for OCT.

To simplify the discussion, the following schematics of OCT in the time domain and spectral domain (or Fourier domain) are shown in Fig. 12.1. The major subsystems are labeled by Roman numerals. Illumination sources and sample scanners are labeled by I and II, respectively, in both schematics in Fig. 12.1. Numeral III refers to a scanning optical delay line (ODL), while numeral IV refers to a fixed-pathlength ODL. Numeral V refers to a single-point detector, and numeral VI refers to an array-based spectrometer (for spectrometer-based Fourier-domain OCT). This notation will refer to these subsystems throughout the chapter.


Spectral Response Optical Design Spherical Aberration Axial Resolution Chromatic Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Hu, A.M. Rollins, Opt. Express 13(17), 6407 (2005).CrossRefPubMedGoogle Scholar
  2. 2.
    Z. Hu, A.M. Rollins, Opt. Express, 14(26), 12751 (2006).CrossRefPubMedGoogle Scholar
  3. 3.
    B.E.A. Saleh, M.C. Teich, Wiley Series in Pure and Applied Optics, ed. by J.W. Goodman (John Wiley, New York, NY, 1991).Google Scholar
  4. 4.
    B.E. Bouma, G.J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002), p. 741.Google Scholar
  5. 5.
    Z. Hu et al., Appl. Opt., 46(35), 8499 (2007).CrossRefPubMedGoogle Scholar
  6. 6.
    M. Laikin, Lens Design, 3rd edn., ed. by B.J. Thompson (Marcel Dekker, New York, 2001), p. 474.Google Scholar
  7. 7.
    W.J. Smith, Modern Optical Engineering, 3rd edn. (McGraw-Hill, New York, 2000), p. 617.Google Scholar
  8. 8.
    K.F. Kwong et al., Opt. Lett. 18(7), 558 (1993).CrossRefPubMedGoogle Scholar
  9. 9.
    G.J. Tearney et al., Science 276(5321), 2037 (1997).CrossRefPubMedGoogle Scholar
  10. 10.
    G.J. Tearney, B.E. Bouma, J.G. Fujimoto, Opt. Lett. 22(23), 1811 (1997).CrossRefPubMedGoogle Scholar
  11. 11.
    A.M. Rollins et al., Opt. Express 3(6), 219 (1998).CrossRefPubMedGoogle Scholar
  12. 12.
    A. Roorda et al., Opt. Express 10(9), 405 (2002).PubMedGoogle Scholar
  13. 13.
    R.J. Zawadzki et al., Opt. Express 13(21), 8532 (2005).CrossRefPubMedGoogle Scholar
  14. 14.
    W. Drexler et al., Opt. Express 24, 1221 (1999).Google Scholar
  15. 15.
    B. Povazay et al., Opt. Express 27(20), 1800 (2002).Google Scholar
  16. 16.
    P.R. Herz et al., Opt. Express 29(19), 2261 (2004).Google Scholar
  17. 17.
    P.H. Tran et al., Opt. Express 29(11), 1236 (2004).Google Scholar
  18. 18.
    A.G. Podoleanu, J.A. Rogers, D.A. Jackson, Opt. Express 7(9), 292 (2000).CrossRefPubMedGoogle Scholar
  19. 19.
    C.K. Hitzenberger et al., Opt. Express 11(21), 2753 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Z. Hu
  • A. M. Rollins

There are no affiliations available

Personalised recommendations