Broad Bandwidth Laser and Nonlinear Optical Light Sources for OCT

  • A. Unterhuber
  • B. Považay
  • A. Aguirre
  • Y. Chen
  • F. X. Kärtner
  • J. G. Fujimoto
  • W. Drexler
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Optical coherence tomography (OCT) achieves very high axial image resolutions independent of focusing conditions, because the axial and transverse resolution are determined independently by different physical mechanisms. This implies that axial OCT resolution can be enhanced using broad bandwidth, low coherence length light sources. The light source not only determines axial OCT resolution via its bandwidth and central emission wavelength, but also determines the penetration in the sample (biological tissue), the contrast of the tomogram and OCT transverse resolution. A minimum output power with low amplitude noise is also necessary to enable high sensitivity and high speed — real time — OCT imaging. Furthermore, ultrabroad bandwidth light sources emitting at different wavelength regions might also enable a potential extension of OCT, e.g., spectroscopic OCT. Hence, it is obvious that the light source is the key technological parameter for an OCT system and proper choice is imperative [1].


Optical Coherence Tomography Output Coupler Sapphire Laser Optical Coherence Tomography Imaging Axial Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Unterhuber, A., et al., Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography. Physics in Medicine and Biology, 2004. 49 (7): p. 1235-1246.CrossRefPubMedGoogle Scholar
  2. 2.
    Maiman, T.H., Stimulated optical radiation in ruby. Nature, 1960. 182: p. 493-494.CrossRefGoogle Scholar
  3. 3.
    Moulton, P.F., Ti-doped sapphire: tunable solid-state laser. Optics News, 1982. 11: p. 9.Google Scholar
  4. 4.
    Wagenblast, P., et al., Diode-pumped 10-fs Cr3+ :LiCAF laser. Opt. Lett., 2003. 28(18): p. 1713-1715.CrossRefPubMedGoogle Scholar
  5. 5.
    Uemura, S. and K. Torizuka, Development of a Diode-Pumped Kerr-Lens Mode-Locked Cr:LiSAF laser. IEEE Journal of Quantum Electronics, 2003. 39: p. 68-73.CrossRefGoogle Scholar
  6. 6.
    Bouma, B., et al., High-Resolution Optical Coherence Tomographic Imaging Using a Mode-Locked Ti-Al2 O3 Laser Source. Optics Letters, 1995. 20(13): p. 1486-1488.CrossRefPubMedGoogle Scholar
  7. 7.
    Spence, D.E., P.N. Kean, and W. Sibbett, Opt. Lett., 1991. 16(42).Google Scholar
  8. 8.
    Brabec, T., et al., Kerr lens mode locking. Opt. Lett., 1992. 17.Google Scholar
  9. 9.
    Fork, R.L., O.E. Martinez, and J.P. Gordon, Negative dispersion using pairs of prisms. Opt. Lett., 1984. 9: p. 150-152.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhou, J., et al., Pulse evolution is a broad-bandwidth Ti:sapphire laser. Opt. Lett., 1994. 19: p. 1149-1151.PubMedGoogle Scholar
  11. 11.
    Szipöcz, R., et al., Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett., 1994. 19(3): p. 201-203.CrossRefGoogle Scholar
  12. 12.
    F.X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H.A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, Design and fabrication of double-chirped mirrors, Opt. Lett., 1997. 22: p. 831-833.CrossRefPubMedGoogle Scholar
  13. 13.
    Bouma, B.E., et al., Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography. Optics Letters, 1996. 21(22): p. 1839-1841.CrossRefPubMedGoogle Scholar
  14. 14.
    Ranka, J.K., R.S. Windeler, and A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett., 2000. 25(1): p. 25-27.CrossRefPubMedGoogle Scholar
  15. 15.
    Birks, T.A., W.J. Wadsworth, and P.S.J. Russel, Generation of an ultra-broad supercontimuum in tapered fibers. Opt. Lett., 2000. 25(19): p. 1415-1417.CrossRefPubMedGoogle Scholar
  16. 16.
    Newbury, N.R., et al., Noise amplification during supercontinuum generation in microstructured fibres. Opt. Lett., 2003. 28: p. 944-945.CrossRefPubMedGoogle Scholar
  17. 17.
    Corwin, K.L., et al., Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber. Applied Physics B-Lasers and Optics, 2003. 77(2-3): p. 269-277.CrossRefGoogle Scholar
  18. 18.
    Ell, R., et al., Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett., 2001. 26: p. 373-375.CrossRefPubMedGoogle Scholar
  19. 19.
    Bartels, A. and H. Kurz, Generation of broadband continuum generation by a Ti:sapphire oscillator with a 1 GHz repetition rate. Opt. Lett., 2002. 27: p. 1839-1841.CrossRefPubMedGoogle Scholar
  20. 20.
    Drexler, W., et al., Ultrahigh-resolution ophthalmic optical coherence tomography. Nature Medicine, 2001. 7(4): p. 502-507.CrossRefPubMedGoogle Scholar
  21. 21.
    Drexler, W., et al., In vivo ultrahigh-resolution optical coherence tomography. Optics Letters, 1999. 24(17): p. 1221-1223.CrossRefPubMedGoogle Scholar
  22. 22.
    Morgner, U., et al., Spectroscopic optical coherence tomography. Optics Letters, 2000. 25(2): p. 111-113.CrossRefPubMedGoogle Scholar
  23. 23.
    Fuji, T., et al., Generation of smooth, ultra-broadband spectra directly from a prismless Ti:sapphire laser. Applied Physics B-Lasers and Optics, 2003. 77(1): p. 125-128.CrossRefGoogle Scholar
  24. 24.
    Babic, D.I. and S.W. Corzine, Analytic expression for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE Journal of Quantum Electronics, 1992. 28: p. 514-524.CrossRefGoogle Scholar
  25. 25.
    Laporta, P. and V. Magni, Dispersive effects in the reflection of femtosecond optical pulses from broadband dielectric mirrors. Appl. Opt., 1985. 24: p. 2014-2020.CrossRefPubMedGoogle Scholar
  26. 26.
    F.X. Kärtner, U. Morgner, T.R. Schibli, E.P. Ippen, J.G. Fujimoto, V. Scheuer, G. Angelow, and T. Tschudi, Ultrabroadband double-chirped mirror pairs for generation of octave spectra. J. Opt. Soc. Am., 2001. B 18: p. 882-895.Google Scholar
  27. 27.
    T.R. Schibli, O. Kuzucu, J. Kim, E.P. Ippen, J.G. Fujimoto, and F.X. Kärtner, V. Scheuer, G. Angelow, “Towards Single-Cycle Laser Systems,” Invited paper IEEE J. Selected Topics in Quantum Electronics, 2003. 4: p. 990-1001.CrossRefGoogle Scholar
  28. 28.
    Morgner, U., et al., Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett., 1999. 24(6): p. 411-413.CrossRefPubMedGoogle Scholar
  29. 29.
    Stingl, A., et al., Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt. Lett., 1995. 20: p. 602-604.CrossRefPubMedGoogle Scholar
  30. 30.
    Morgner, U., et al., Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime. Phys. Rev. Lett., 2001. 86(24): p. 5462-5.CrossRefPubMedGoogle Scholar
  31. 31.
    Ramond, T.M., et al., Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator. Opt. Lett., 2002. 27(20): p. 1842-1844.CrossRefPubMedGoogle Scholar
  32. 32.
    Schibli, T.R., et al., Continuum generation in a prismless Ti:sapphire laser. In: R.D. Miller, M.M. Murnsne, N.F. Scherer, A.M. Weinere (Eds.) Ultrafast Phenomena XIII, Chemical Physics, 2002: p. 131-133.Google Scholar
  33. 33.
    Unterhuber, al., , Compact, low-cost Ti:Al2 O3 laser for in vivo ultrahigh-resolution optical coherence tomography. Optics Letters, 2003. 28(11): p. 905-907.CrossRefPubMedGoogle Scholar
  34. 34.
    Kowalevicz, al., , Ultralow-threshold Kerr-lens mode-locked Ti:Al2 O3 laser. Optics Letters, 2002. 27: p. 2037-2039.CrossRefPubMedGoogle Scholar
  35. 35.
    Wagenblast, P.C., et al., Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr3+ :LiCAF laser oscillator by use of third-order dispersion-compensating double-chirped mirrors. Opt. Lett., 2002. 27: p. 1726-1728.CrossRefPubMedGoogle Scholar
  36. 36.
    Wagenblast, P.C., et al., Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr3+ :LiCAF laser. Optics Express, 2004. 12(14): p. 3257-3263.CrossRefPubMedGoogle Scholar
  37. 37.
    Herrmann, J., Theory of Kerr-lens mode-locking: role of self-focusing and radially varying gain. Journal of Optical Socitey of America B,1994.11: p. 498-512.CrossRefGoogle Scholar
  38. 38.
    Chudoba, C., et al., All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 µm. Opt. Lett., 2001. 26(5): p. 292-294.CrossRefPubMedGoogle Scholar
  39. 39.
    Prasankumar, R.P., et al., Self-starting mode locking in a Cr:forsterite laser by use of non-epitaxially-grown semiconductor-doped silica films. Opt. Lett., 2002. 27(17): p. 1564-1566.CrossRefPubMedGoogle Scholar
  40. 40.
    Herz, P.R., et al., Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography. Optics Express, 2004. 12(15): p. 3532-3542.CrossRefPubMedGoogle Scholar
  41. 41.
    Chen, Y., et al., Ultrahigh resolution optical coherence tomography of Barrett's esophagus: preliminary descriptive clinical study correlating images with histology. Endoscopy, 2007. 39(7): p. 599-605.CrossRefPubMedGoogle Scholar
  42. 42.
    Ripin, D.J., et al., Generation of 20-fs pulses by a prismless Cr4+ :YAG laser. Opt. Lett., 2002. 27(1): p. 61-63.CrossRefPubMedGoogle Scholar
  43. 43.
    Kaiser, P., E.A.J. Marcatili, and S.E. Miller, A new optical fiber. Bell Sys. Tech. J., 1973. 52: p. 265-269.Google Scholar
  44. 44.
    Chin, S.L., et al., The white light supercontinuum is indeed an ultrafast white light laser. Jpn. J. Appl. Phys. Part 2, 1999. 38: p. 126-128.CrossRefGoogle Scholar
  45. 45.
    Wang, Y.M., et al., Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Optics Letters, 2003. 28(3): p. 182-184.CrossRefPubMedGoogle Scholar
  46. 46.
    Marks, D.L., et al., Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography. Optics Letters, 2002. 27(22): p. 2010-2012.CrossRefPubMedGoogle Scholar
  47. 47.
    Považay, B., et al., Submicrometer axial resolution optical coherence tomography. Optics Letters, 2002. 27(20): p. 1800-1802.CrossRefPubMedGoogle Scholar
  48. 48.
    Bourquin, S., et al., Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber. Optics Express, 2003. 11(24): p. 3290-3297.PubMedCrossRefGoogle Scholar
  49. 49.
    Tamura, K., et al., Broadband light generation by femtosecond pulse amplification with stimulated Raman scattering in a high power erbium-doped fibre amplifier. Opt. Lett., 1995. 20: p. 1631-1633.CrossRefPubMedGoogle Scholar
  50. 50.
    Hartl, I., et al., Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Optics Letters, 2001. 26(9): p. 608-610.CrossRefPubMedGoogle Scholar
  51. 51.
    Gaeta, A.L., Nonlinear propagation and continuum generation in microstructured optical fibres. Opt. Lett., 2002. 27: p. 924-926.CrossRefPubMedGoogle Scholar
  52. 52.
    Gu, X., et al., Frequency resolved optical gating and single shot spectral measurements reveal fine structure in microstructure-fibre-continuum. Opt. Lett., 2002. 27: p. 1174-1176.CrossRefPubMedGoogle Scholar
  53. 53.
    Wang, Y.M., et al., Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography. Journal of the Optical Society of America a-Optics Image Science and Vision, 2005. 22(8): p. 1492-1499.CrossRefGoogle Scholar
  54. 54.
    Lim, H., et al., Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 µm. Optics Letters, 2005. 30(10): p. 1171-1173.CrossRefPubMedGoogle Scholar
  55. 55.
    Humbert, G., et al., Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Optics Express, 2006. 14(4): p. 1596-1603.CrossRefPubMedGoogle Scholar
  56. 56.
    G.S. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, M. Kaivola, Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers; Opt. Express, 2002. 10(20), 83-1098.Google Scholar
  57. 57.
    Wang, H. and A.M. Rollins, Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography. Appl. Opt., 2007. 46(10): p. 1787-94.CrossRefPubMedGoogle Scholar
  58. 58.
    Aguirre, A.D., et al., Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. Optics Express, 2006. 14(3): p. 1145-1160.CrossRefPubMedGoogle Scholar
  59. 59.
    Spöler, F., et al., Simultaneous dual-band ultra-high resolution optical coherence tomography. Opt. Lett., 2007. 15(17): p. 10832-10841.Google Scholar
  60. 60.
    Wang, H., C.P. Fleming, and A.M. Rollins, Ultrahigh-resolution optical coherence tomography at 1.15 µm using photonic crystal fiber with no zero-dispersion wavelengths. Optics Express, 2007. 15(6): p. 3085-3092.CrossRefPubMedGoogle Scholar
  61. 61.
    Hsiung, P.L., et al., Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source. Optics Express,2004.12(22): p. 5287-5295.CrossRefPubMedGoogle Scholar
  62. 62.
    Bizheva, K., et al., Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103 (13): p. 5066-5071.CrossRefPubMedGoogle Scholar
  63. 63.
    Nishizawa, N., et al., Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm. Opt. Lett., 2004. 29(24): p. 2846-8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. Unterhuber
  • B. Považay
  • A. Aguirre
  • Y. Chen
  • F. X. Kärtner
  • J. G. Fujimoto
    • 1
  • W. Drexler
    • 2
  1. 1.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.School of Optometry and Vision SciencesCardiff UniversityCardiffUK

Personalised recommendations